• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre uma Construção Relacionada ao Quadrado Tensional não-Abeliano de um Grupo / On a Construction Related to the non-Abelian Tensor Square of a Group

ANDRADE, Agenor Freitas de 01 July 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Agenor Freitas de Andrade.pdf: 1042479 bytes, checksum: 049cc003452cdaee484bef8ab2c371b3 (MD5) Previous issue date: 2011-07-01 / Let G and Gj be isomorphic groups. We study the group V (G) which is an extension of the non-abelian tensor square of a group G, G G. Looking for V (G) as an operator in the class of groups, we observe that this operator preserves some properties of the group G such as finiteness, nilpotency and solubility. For a p-group finite G we find an upper bound for the order of G G. Finally, we verified computationally, for some groups, and that the results and also the bounds for the orders of the groups shown here are actually respected. / Sejam G e Gj grupos isomorfos. Estudaremos o grupo V (G) que é uma extensão de grupo do quadrado tensorial não-abeliano de um grupo G, G G. Olhando para V (G) como um operador na classe de grupos, observamos que este operador preserva algumas propriedades do grupo G, tais como finitude, solubilidade e nilpotência. Ainda para um p-grupo finito G encontramos um limitante para ordem de G G: Por fim, verificamos computacionalmente, para alguns grupos, que os resultados e também os limitantes para as ordens dos grupos aqui apresentados são de fato respeitados.

Page generated in 0.0578 seconds