Spelling suggestions: "subject:"clorofil d'activités"" "subject:"ceprofil d'activités""
1 |
Détermination et variation du profil physique du footballeur de très haut niveau : référence spéciale aux performances athlétiques selon les différents postes de jeu orientant sur la validation d'un test d'agilitéVigne, Grégory 13 December 2011 (has links) (PDF)
Cette thèse s'adresse aussi bien aux scientifiques, aux entraîneurs, aux préparateurs physiques et aux sportifs souhaitant approfondir leurs connaissances de l'activité football. Les aspects scientifiques abordés ainsi que leur transposition en outils de terrain pourront être utilisés comme moyen d'évaluation et d'orientation des séances d'entraînement. Ainsi, au travers de ce travail, nous avons abordé le ratio entre le temps de travail et le temps de récupération réalisés en matches de très haut niveau dans le Championnat de Première Division Italienne au cours de la saison 2004/2005. Ce ratio moyen de compétition est de 1/8, à savoir 2.2 secondes d'effort et 18 secondes de récupération. La deuxième partie de ce travail consistait à analyser l'évolution du profil d'effort et la possession de balle collective de footballeurs de très haut niveau au cours de trois saisons consécutives avec un effectif et un staff technique stables. L'étude a permis de mettre en avant une diminution de la quantité d'effort produite par les joueurs de l'ordre de 5% sans altération de la performance ainsi que l'augmentation de la possession de balle collective. La troisième et dernière partie a été de créer et d'analyser un test d'agilité spécifique à l'activité football. Après, une analyse complète des différents éléments liés à la reproductibilité et à la validité du test, il s'avère que ce test semble rendre compte de l'activité motrice du footballeur. De plus, les mesures réalisées dans le cadre de ce travail ont permis de fournir les premières normes de performance qui peuvent être attendues en fonction de l'âge du joueur et de son niveau de jeu. Au terme de notre travail, nous pouvons conclure que cette thèse a apporté des résultats spécifiques pour orienter l'entraînement athlétique du footballeur moderne et à proposer un nouvel outil de détection des jeunes footballeurs.
|
2 |
Modélisation d'activités et agrégation de profils de volGuéron, David 22 November 2011 (has links)
L'agrégation d'activités pour l'identification de catégories de comportements est un enjeu majeur de tous les systèmes socio-techniques complexes actuels. La question clé consiste à réaliser une synthèse de façons de faire (ou praxies) intégrant la variabilité des opérateurs humains impliqués. Dans un cadre aéronautique, l'agrégation d'activités de pilotage vise à accélérer la détermination de procédures améliorant la sécurité des vols et l'efficacité des missions ; elle repose sur les données objectives des paramètres enregistrés des phases de vol significatives et se structure grâce à une interprétation experte. Un modèle d’Agrégation Supervisée : - décomposition, - maïeutique, - reconstruction, est ainsi établi dans cette thèse. Le cœur en est la 2e étape qui généralise et enrichit le concept de « moyenne » classique des approches probabilistes : une base d'apprentissage, constituée d'activités déterminées et caractérisées par l'interprétation experte, est utilisée pour identifier les motifs significatifs de paramètres enregistrés, c'est à dire les praxies qui agrègent donc les éléments essentiels des activités. Ceux-ci sont choisis au sein d'un ensemble de motifs paramétrables génériques, dont les divers seuils sont ajustés de manière incrémentale. Les motifs sont alors évalués selon les deux critères intrinsèques de cohérence et de pertinence de leurs seuils, ainsi que le critère extrinsèque de la conformité des résultats obtenus par leur utilisation aux vols de la base d'apprentissage. Peuvent à ce niveau se faire jour des groupements parmi les éléments de la base d'apprentissage, selon les motifs rendant compte des activités particulières. L'expertise doit également être généralisable pour permettre l'étude de plusieurs points-clé dans cette étape maïeutique.Ce modèle générique définit une activité comme une structure formelle de praxies, et ouvre la voie à un enrichissement de la 3e étape intégrant la multiplicité des rôles des opérateurs. / Aggregating activities in order to identify categories of behaviour is a major topic of actual complex socio-technical systems. The key issue lies in incorporating the variability of implied human operators in the synthesis of ways of doing (or praxis). Aggregation of piloting activities is directed to allow a faster and more secure determination of procedures enhancing flight security and mission efficiency; it is based on the objective data of flight parameters recorded during significant flight phases, and is carried under thorough expert interpretation.A Supervised Aggregation model, consisting in the 3 steps of 1) decomposition, 2) maieutics, and 3) reconstruction, is thus devised in the present PhD. At the heart of this aggregation process, the 2nd maieutic step generalizes and enriches the usual concept of ''mean'', deeply related to probabilistic approaches: a set of activities analyzed and characterized by the expert, the learning basis, is related to significant patterns in the lot of recorded flight parameter values, in other words the praxis resulting of the aggregation of the activities. The patterns are selected from a collection of customizable generic patterns, whose thresholds are incrementally adjusted using the learning basis. The obtained patterns are then assessed according to the three criteria of 1) coherence and 2) likelihood of the thresholds, as well as the 3) conformity of these patterns used on the learning basis. At this stage, groups among the studied behaviours might emerge, gathering those for which an activity would be depicted by similar patterns. Expert-knowledge must be generalized in order to perform the joint analysis of several key points in this maieutic step.This generic model defines an activity as a formal structure of praxis, paving the way towards the further developments of the process, through the enrichment of the 3rd step, incorporating the multiplicity of operating roles.
|
3 |
Non-Intrusive Information Sources for Activity Analysis in Ambient Assisted Living Scenarios / Mesures non-intrusives et analyse de l’activité humaine dans le domaine résidentielleKlein, Philipp 19 November 2015 (has links)
Comme les gens vieillissent, ils sont souvent confrontés à un certain degré de diminution des capacités cognitives ou de la force physique. Isolement de la vie sociale, mauvaise qualité de la vie, et risque accru de blessures en sont les principales conséquences. Ambient Assisted Living (AAL) est une vision de la façon dont les gens vivent leur vie dans leur propre maison, à mesure qu'ils vieillissent : handicaps ou limitations sont compensées par la technologie, là où le personnel de prestation de soins est rare ou des proches ne sont pas en mesure d'aider. Les personnes concernées sont assistés par la technologie. Le terme "ambiante" en AAL exprime, ce que cette technologie doit être, au- delà de l’assistance. Elle doit être intégrée dans l’environnement de manière à ce qu'elle ne soit pas reconnue en tant que tel. L'interaction avec les résidents doit être intuitive et naturelle. L'équipement technique doit être discret ct bien intégré. Les domaines d'application ciblés dans cette thèse sont le suivi de l’activité et la recherche de profils d'activités dans des appartements ou des petites maisons. L'acquisition d’informations concernant l’activité des résidents est vitale pour le succès de toute la technologie d’assistance. Dans de nombreux domaines de la vie quotidienne, ceci est déjà de la routine. L’état de l’art en matière de technologie de détection comprend des caméras, des barrières lumineuses, des capteurs RFID, la radiolocalisation de signal en utilisant des transpondeurs et des planchers sensibles à la pression. En raison de leurs principes de fonctionnement, ils ont malheureusement un impact important sur les environnements domestiques et de vie. Par conséquent, cette thèse est consacrée à la recherche de technologies d’acquisition d’informations de l’activité non-intrusive ayant un impact minimal sur la vie quotidienne. Deux technologies de base, la détection de présence passive sans dispositif et le suivi de charges de manière non-intrusive, sont prises en compte dans cette thèse. / As people grow older, they are often faced with some degree of decreasing cognitive abilities or physical strength. Isolation from social life, poor quality of life, and increased risk or injuries are the consequence. Ambient Assisted Living (AAL) is a vision for the way people live their life in their own home, as they grow older: disabilities or limitations are compensated for by technology, where care-giving personnel is scarce or relatives are unable to help. Affected people are assisted by technology. The term "Ambient" in AAL expresses, what this technology needs to be, beyond assistive. It needs to integrate into the living environment in such a way that it is not recognized as such any more. Interaction with residents needs to be intuitive and natural. Technical equipment should be unobtrusive and well integrated. The areas of application targeted in this thesis are activity monitoring and activity pattern discovery in apartments or small houses. The acquisition of information regarding the residents' activity is vital for the success of any assistive technology. In many areas of daily life, this is routine already. State-of-the-art sensing technology includes cameras, light barriers, RFID sensors, radio signal localization using transponders, and pressure sensitive Floors. Due to their operating principles, they have a big impact on home and living environments. Therefore, this thesis is dedicated to research for non-intrusive activity information acquisition technology, that has minimal impact on daily life. Two base technologies are taken into account in this thesis.
|
Page generated in 0.1596 seconds