Spelling suggestions: "subject:"profundidade efetiva dde raízes"" "subject:"profundidade efetiva dee raízes""
1 |
Irrigação subsuperficial deficitária no cultivo de tomateiro em casa de vegetaçãoMendonça, Thaís Grandizoli 17 April 2017 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-16T20:20:29Z
No. of bitstreams: 1
DissTGM.pdf: 2889804 bytes, checksum: c55eea68163f4e92468140f7d3ced089 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-16T20:20:36Z (GMT) No. of bitstreams: 1
DissTGM.pdf: 2889804 bytes, checksum: c55eea68163f4e92468140f7d3ced089 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-16T20:20:43Z (GMT) No. of bitstreams: 1
DissTGM.pdf: 2889804 bytes, checksum: c55eea68163f4e92468140f7d3ced089 (MD5) / Made available in DSpace on 2017-08-16T20:20:49Z (GMT). No. of bitstreams: 1
DissTGM.pdf: 2889804 bytes, checksum: c55eea68163f4e92468140f7d3ced089 (MD5)
Previous issue date: 2017-04-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The tomato is a demanding crop in regards to water and is among the most consumed vegetables in Brazil. The search for alternatives to improve tomato productivity, as well as reduce the water use in the crop cycle, is essential for agricultural production and environment. The objectives of this work were to evaluate the contribution of subsurface drip irrigation to yield and fruit quality of Grape tomatoes and to estimate the water use efficiency (EUA). The experiment was carried out in the CCA / UFSCar and consisted of three treatments with four randomized blocks. Irrigation management considered the storage soil water capacity (CAD), the soil moisture being high according to the water content reference of the treatment, 0.33 (T1), 0.29 (T2) and 0.25 m3 m-3 (T3), corresponding to 100 % replacement of CAD, and deficit irrigations of 75 and 50 % of CAD, respectively. Water content was monitored by TDR probes and the roots depth obtained through a root images scanner. The Grape tomatoes were transplanted under drip lines installed at 0.20 m depth. Quantitative and qualitative characteristics of the fruits were evaluated in relation to the proposed treatments, being: fruits number per plant, average fruit mass and productivity, quantitative characteristics and; Diameter, length, soluble solids, fruit pH and dry mass of leaves and stem, qualitative characteristics. The total water applied was 1297 mm in T1, 471 mm in T2 (36 % of water applied in T1) and 234 mm in T3 (18 % of T1). Among the characteristics evaluated, the T2 did not differ from the T1 treatment, except in the diameter and pH. The T3 treatment was equal to T1 only in the fruits number per plant. The average fruit mass was different among all treatments and there was no difference between soluble solids values. The T3 treatment obtained higher EUA, followed by T2 and T1, but did not have higher productivity nor better results in other evaluated attributes. Deficit subsurface irrigation of 75 % of CAD did not interfere in Grape tomato productivity and fruit quality, being the most recommended because of qualitative and quantitative attributes similar to full irrigation and to increase the EUA. It is concluded that deficit subsurface irrigation had productivity and fruit quality of Grape tomatoes like full irrigation when used 75 % of CAD, increased the water use efficiency and contributed with water use reduction in crop cycle. / O tomateiro é uma cultura exigente em água e está entre as hortaliças mais consumidas no Brasil. A busca por alternativas que melhorem sua produtividade, bem como reduzam o uso da água no ciclo da cultura, é essencial para a produção agrícola e para o meio ambiente. Este trabalho teve o objetivo avaliar a contribuição da irrigação subsuperficial deficitária na produtividade e qualidade dos frutos de tomateiros Grape e estimar a eficiência no uso da água (EUA). O experimento foi realizado no CCA/UFSCar e consistiu de três tratamentos com doze parcelas em blocos casualizados. O manejo da irrigação levou em consideração a capacidade de água disponível no solo (CAD), sendo a umidade do solo elevada de acordo com a umidade de referência do tratamento, 0,33 (T1), 0,29 (T2) e 0,25 m3 m-3 (T3), correspondendo à reposição de 100 % da CAD, e irrigações deficitárias de 75 e 50 % da CAD, respectivamente. A umidade do solo foi monitorada por sondas TDR e o crescimento das raízes por imagens obtidas através de scanner de raízes. As mudas de tomateiro Grape foram transplantadas sob linhas de gotejamento instaladas a 0,20 m de profundidade. Foram avaliados atributos quantitativos e qualitativos dos frutos em relação aos tratamentos propostos, sendo eles: número de frutos por planta, massa média dos frutos e produtividade como atributos quantitativos; diâmetro, comprimento, sólidos solúveis, pH dos frutos e massa seca das folhas e caule como atributos qualitativos. A lâmina total de água aplicada foi 1297 mm em T1, 471 mm em T2 (36 % da lâmina aplicada em T1) e 234 mm em T3 (18 % de T1). Entre os atributos avaliados, o diâmetro e pH dos frutos do tratamento T2 diferiram do T1. Já o tratamento T3 foi igual ao T1 apenas no número de frutos por planta. A massa média dos frutos foi diferente entre todos os tratamentos e não houve diferença no valor de sólidos solúveis. O tratamento T3 obteve maior EUA, seguido por T2 e T1, porém não teve maior produtividade e nem melhores resultados em outros atributos avaliados. A irrigação subsuperficial deficitária de 75 % da CAD não interferiu na produtividade do tomateiro Grape e na qualidade dos frutos, sendo a mais recomendada por apresentar atributos qualitativos e quantitativos similares à irrigação plena e aumentar a EUA. Conclui-se com este trabalho que irrigação subsuperficial deficitária teve produtividade e qualidade de frutos de tomateiro Grape semelhante à irrigação plena quando utilizado 75 % da CAD, aumentou a eficiência no uso da água e contribuiu com a redução no uso da água no ciclo da cultura.
|
2 |
Umidade do solo e disponibilidade hídrica na zona das raízes em condições naturais de caatinga preservada / Soil moisture and water availability in the root zone under natural conditions of preserved CaatingaCosta, Carlos Alexandre Gomes January 2012 (has links)
COSTA, Alexandre Gomes da. Umidade do solo e disponibilidade hídrica na zona das raízes em condições naturais de caatinga preservada. 2012. 182 f. : Tese (doutorado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Departamento de Engenharia Agrícola, Programa de Pós-Graduação em Engenharia Agrícola, 2012. Fortaleza-CE, 2012. / Submitted by demia Maia (demiamlm@gmail.com) on 2016-08-02T16:07:05Z
No. of bitstreams: 1
2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5) / Approved for entry into archive by demia Maia (demiamlm@gmail.com) on 2016-08-02T16:07:38Z (GMT) No. of bitstreams: 1
2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5) / Made available in DSpace on 2016-08-02T16:07:38Z (GMT). No. of bitstreams: 1
2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5)
Previous issue date: 2012 / Regarding ecohydrology, the catchment water is distributed over several important compartments. Many studies in semiarid re gions indicate the surface reservoirs as the main water compartments. However, the watershed has greater scope than the water reservoirs contained therein, and water resources in compartments distributed in the watershed (like in soil) should be analyzed not only with regard to ecological uses, but also as spaces of water availability. Therefore, the object ive of this work was to analyze, based on measurements and modeling, the water dynamics in th e soils of a semi-arid basin in preserved Caatinga, and its impact on water availability. Wit h this in mind, it was measured, among others, the soil moisture, every hour, from 2003 to 2010 (2923 days) in the Aiuaba Experimental Basin (AEB, 12 km ²), fully preserved and with average annual rainfall of 560 mm. Monitoring was carried out through three TDR se nsors, one installed in each of the three soil and vegetation associations (SVA) identified in the basin. The research method considered six main steps: i) assessment of the eff ective root depth of preserved Caatinga ii) calibration of humidity TDR sensors iii) space-time representation of soil moisture in each SVA unit iv) analysis of soil water availability in the root zone, v) parameterization of the WASA-SED hydrological model, and vi) parameterizati on of the DiCaSM hydrological model. The results of this research indicate the importance of addressing the temporal analysis of soil moisture and soil water availability in the root zone to maintain the Caatinga biome. More specifically, it was observed that the effecti ve depth of the root system on AEB ranged between 70 and 80 cm in areas with deep soils, but in areas with shallow soils, it was observed that the effective depth of the roots had adapted to the constraints, having been reduced to less than 40 cm. Furthermore, the season al analysis showed that in the dry season, the roots have lengths up to 11 cm smaller, openin g, therefore, secondary pores that facilitate the penetration of what little rain water falls in the dry months (June-December), as well as in the first rains of the wet season. In the two SVAs whose soils are deep and the vegetation is dense, the soil water is 'not available' (ie below the permanent wilting point - WP) during nearly nine months a year (72% of the time), and on ly during three months of the year (25% of the time) the soil water is available. In the re maining 3% of the year (about 10 days) there is gravitational water in these SVAs. In the SVAs whose soil is shallow and whose vegetation is sparse, the dynamics of soil water are different : the time when there is gravitational water, available and unavailable, is practically the same (four months a year). This is due to, among other things, the low soil moisture at the permanen t wilting point of the Udorthent, and to its limited thickness, generating saturation much more frequently than in others that - unlike this one - have deep drainage. The depletion of soil wat er under conditions of moisture below the wilting point was another important result of this research. In the two associations with deep soils and thick vegetation, it was observed – throu ghout the observation period – continuous fall of moisture level until it approached asymptot ically the residual moisture. More detailed analysis showed that the reduction of soil moisture between the WP and the residual moisture level always followed the exponential decay. It was observed, in the association of shallow soil and sparse vegetation, that the moisture did not fall to below the WP, even subjected to the same rigorous climate of the other associations . Considering: (i) that in such a dry soil, the drainage is unlikely, and (ii) that the associated processes of percolation and evaporation should not be responsible for the removal of soil w ater either (since the phenomenon is not observed in SVAs whose soil is shallow and therefor e warmer) , it is raised the hypothesis that the soil drying under these conditions must be caused by water extraction by vegetation. This would strengthen the argument that the Caating a has adapted to survive under water stress. The hydrological models WASA-SED and DiCaSM failed to adequately represent the temporal dynamics of soil water in the AEB. However , the models did satisfactorily reproduce the retention curves of soil moisture, al lowing the representation of the water availability in the root zone for planning purposes . Finally, we managed to evaluate - quantitatively, spatially and temporally – the soil water availability. This availability is of the same order of magnitude of the availability of an o ptimal surface reservoir. The availability in the soil, in quantitative terms, can be almost five times higher than that of the surface reservoir. However, the security associated with su rface water (90%) is much higher than the water permanence available in the AEB: just 28% in areas with deep soils and 65% in areas with shallow soils. / A água na bacia hidrográfica está distribuída em diversos compartimentos importantes no que se refere à ecohidrologia. Muitos estudos em regiões semiáridas apontam os reservatórios superficiais como principais compartimentos de água. Entretanto, a bacia hidrográfica tem maior abrangência que as bacias hidráulicas nela contida, e os recursos hídricos nos compartimentos distribuídos na bacia hidrográfica (como no solo) devem ser analisados não somente no que se refere aos usos ecológicos, mas também como espaço de disponibilidade hídrica. Portanto, o objetivo do trabalho foi analisar, com base em medidas e modelagem, a dinâmica da água nos solos de uma bacia semiárida de Caatinga preservada e seu impacto sobre a disponibilidade hídrica. Para isso foi medida, entre outros, a umidade do solo a cada hora, de 2003 a 2010 (2923 dias) na Bacia Experimental de Aiuaba (BEA, 12 km²), totalmente preservada e com precipitação média anual de 560 mm. O monitoramento foi realizado através de três sensores TDR, um instalado em cada uma das três associações entre solo e vegetação (SVA) identificadas na bacia. O método de investigação considerou seis etapas principais: i) determinação da profundidade efetiva das raízes da Caatinga preservada; ii) calibração dos sensores de umidade tipo TDR; iii) representação espaço-temporal da umidade do solo em cada unidade de SVA; iv) análise da disponibilidade hídrica do solo na zona das raízes; v) parametrização do modelo hidrológico WASA-SED; e vi) parametrização do modelo hidrológico DiCaSM. Os resultados obtidos nesta pesquisa indicam a importância da abordagem da análise temporal da umidade do solo e da disponibilidade hídrica do solo na zona das raízes para a manutenção do bioma Caatinga. Mais especificamente, foi observado que a profundidade efetiva do sistema radicular na BEA oscilou entre 70 e 80 cm nas regiões com solos profundos, porém, em regiões com solos rasos, observou-se que a profundidade efetiva das raízes adaptou-se às restrições, ficando reduzida a menos de 40 cm. Além disso, a análise sazonal demonstrou que, na estação de estio, as raízes têm comprimentos até 11 cm menores, abrindo, portanto, poros secundários que facilitarão a penetração da água nas eventuais chuvas dos meses secos (junho a dezembro), assim como nas primeiras chuvas da estação úmida. Nas duas SVAs cujos solos são profundos e cuja vegetação é densa, a água no solo encontra-se ‘não-disponível’ (isto é, abaixo do ponto de murcha permanente – WP) em quase nove meses ao ano (72% do tempo); e somente durante três meses ao ano (25%) a água no solo encontra-se disponível. Nos 3% restantes do ano (cerca de 10 dias) há água gravitacional nessas SVAs. Na SVA cujo solo é raso e cuja vegetação é esparsa, a dinâmica da água no solo é diferente: o tempo em que há água gravitacional, disponível e não disponível é praticamente o mesmo (quatro meses ao ano). Isso se deve, entre outros, à baixa umidade do solo no ponto de murcha permanente do neossolo litólico; e à sua restrita espessura, gerando saturação muito mais frequentemente que nos demais solos que – ao contrário deste – dispõem de drenagem profunda. A depleção da água no solo sob condições de umidade abaixo do ponto de murcha foi outro resultado importante desta pesquisa. Nas duas associações com solos profundos e vegetação densa, observou-se – ao longo de todo o período investigado – decaimento contínuo da umidade até que a mesma se aproximasse assintoticamente da umidade residual. Análise mais detalhada demonstrou que a redução da umidade do solo entre o WP e a umidade residual sempre obedecia ao decaimento exponencial. Na associação com solo raso e vegetação esparsa observou-se que a umidade não caía para valores inferiores ao WP, mesmo sujeita ao mesmo rigor climático das demais associações. Considerando-se: (i) que em solo tão seco, a drenagem é improvável; e (ii) que os processos associados de percolação e evaporação tampouco devam ser os responsáveis pela retirada de água do solo (posto que o fenômeno não se observa na SVA cujo solo é raso e, portanto, mais quente); levanta-se a hipótese que o secamento do solo nessas condições deva ser causado por extração de água pela vegetação. Isso reforçaria a tese de que a Caatinga dispõe de adaptação para sobreviver mesmo em condições de estresse hídrico. Os modelos hidrológicos WASA-SED e DiCaSM não conseguiram representar adequadamente a dinâmica temporal da água nos solos da BEA. No entanto, os modelos reproduziram satisfatoriamente as curvas de permanência da umidade dos solos, permitindo representar a disponibilidade hídrica na zona das raízes para fins de planejamento. Por fim, logrou-se avaliar – quantitativa, espacial e temporalmente – a disponibilidade hídrica do solo. Esta é da mesma ordem de grandeza da disponibilidade de um reservatório superficial ótimo. Em termos quantitativos, a disponibilidade no solo chega a ser quase cinco vezes superior à do reservatório superficial, entretanto, a garantia associada da água superficial (90%) é bem superior à permanência da água disponível na BEA: apenas 28% nas áreas com solos profundos e 65% nas áreas com solos rasos.
|
Page generated in 0.059 seconds