Spelling suggestions: "subject:"deprogram language"" "subject:"ramprogram language""
441 |
A predicated network formalism for commonsense reasoning.January 2000 (has links)
Chiu, Yiu Man Edmund. / Thesis submitted in: December 1999. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 269-248). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The Beginning Story --- p.2 / Chapter 1.2 --- Background --- p.3 / Chapter 1.2.1 --- History of Nonmonotonic Reasoning --- p.3 / Chapter 1.2.2 --- Formalizations of Nonmonotonic Reasoning --- p.6 / Chapter 1.2.3 --- Belief Revision --- p.13 / Chapter 1.2.4 --- Network Representation of Knowledge --- p.17 / Chapter 1.2.5 --- Reference from Logic Programming --- p.21 / Chapter 1.2.6 --- Recent Work on Network-type Automatic Reasoning Sys- tems --- p.22 / Chapter 1.3 --- A Novel Inference Network Approach --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter 1.5 --- Organization of the Thesis --- p.24 / Chapter 2 --- The Predicate Inference Network PIN --- p.25 / Chapter 2.1 --- Preliminary Terms --- p.26 / Chapter 2.2 --- Overall Structure --- p.27 / Chapter 2.3 --- Object Layer --- p.29 / Chapter 2.3.1 --- Virtual Object --- p.31 / Chapter 2.4 --- Predicate Layer --- p.33 / Chapter 2.4.1 --- Node Values --- p.34 / Chapter 2.4.2 --- Information Source --- p.35 / Chapter 2.4.3 --- Belief State --- p.36 / Chapter 2.4.4 --- Predicates --- p.37 / Chapter 2.4.5 --- Prototypical Predicates --- p.37 / Chapter 2.4.6 --- Multiple Inputs for a Single Belief --- p.39 / Chapter 2.4.7 --- External Program Call --- p.39 / Chapter 2.5 --- Variable Layer --- p.40 / Chapter 2.6 --- Inter-Layer Links --- p.42 / Chapter 2.7 --- Chapter Summary --- p.43 / Chapter 3 --- Computation for PIN --- p.44 / Chapter 3.1 --- Computation Functions for Propagation --- p.45 / Chapter 3.1.1 --- Computational Functions for Combinative Links --- p.45 / Chapter 3.1.2 --- Computational Functions for Alternative Links --- p.49 / Chapter 3.2 --- Applying the Computation Functions --- p.52 / Chapter 3.3 --- Relations Represented in PIN --- p.55 / Chapter 3.3.1 --- Relations Represented by Combinative Links --- p.56 / Chapter 3.3.2 --- Relations Represented by Alternative Links --- p.59 / Chapter 3.4 --- Chapter Summary --- p.61 / Chapter 4 --- Dynamic Knowledge Update --- p.62 / Chapter 4.1 --- Operations for Knowledge Update --- p.63 / Chapter 4.2 --- Logical Expression --- p.63 / Chapter 4.3 --- Applicability of Operators --- p.64 / Chapter 4.4 --- Add Operation --- p.65 / Chapter 4.4.1 --- Add a fully instantiated single predicate proposition with no virtual object --- p.66 / Chapter 4.4.2 --- Add a fully instantiated pure disjunction --- p.68 / Chapter 4.4.3 --- Add a fully instantiated expression which is a conjunction --- p.71 / Chapter 4.4.4 --- Add a human biased relation --- p.74 / Chapter 4.4.5 --- Add a single predicate expression with virtual objects --- p.76 / Chapter 4.4.6 --- Add a IF-THEN rule --- p.80 / Chapter 4.5 --- Remove Operation --- p.88 / Chapter 4.5.1 --- Remove a Belief --- p.88 / Chapter 4.5.2 --- Remove a Rule --- p.91 / Chapter 4.6 --- Revise Operation --- p.94 / Chapter 4.6.1 --- Revise a Belief --- p.94 / Chapter 4.6.2 --- Revise a Rule --- p.96 / Chapter 4.7 --- Consistency Maintenance --- p.97 / Chapter 4.7.1 --- Logical Suppression --- p.98 / Chapter 4.7.2 --- Example on Handling Inconsistent Information --- p.99 / Chapter 4.8 --- Chapter Summary --- p.102 / Chapter 5 --- Knowledge Query --- p.103 / Chapter 5.1 --- Domains of Quantification --- p.104 / Chapter 5.2 --- Reasoning through Recursive Rules --- p.109 / Chapter 5.2.1 --- Infinite Looping Control --- p.110 / Chapter 5.2.2 --- Proof of the finite termination of recursive rules --- p.111 / Chapter 5.3 --- Query Functions --- p.117 / Chapter 5.4 --- Type I Queries --- p.119 / Chapter 5.4.1 --- Querying a Simple Single Predicate Proposition (Type I) --- p.122 / Chapter 5.4.2 --- Querying a Belief with Logical Connective(s) (Type I) --- p.128 / Chapter 5.5 --- Type II Queries --- p.132 / Chapter 5.5.1 --- Querying Single Predicate Expressions (Type II) --- p.134 / Chapter 5.5.2 --- Querying an Expression with Logical Connectives (Type II) --- p.143 / Chapter 5.6 --- Querying an Expression with Virtual Objects --- p.152 / Chapter 5.6.1 --- Type I Queries Involving Virtual Object --- p.152 / Chapter 5.6.2 --- Type II Queries involving Virtual Objects --- p.156 / Chapter 5.7 --- Chapter Summary --- p.157 / Chapter 6 --- Uniqueness and Finite Termination --- p.159 / Chapter 6.1 --- Proof Structure --- p.160 / Chapter 6.2 --- Proof for Completeness and Finite Termination of Domain Search- ing Procedure --- p.161 / Chapter 6.3 --- Proofs for Type I Queries --- p.167 / Chapter 6.3.1 --- Proof for Single Predicate Expressions --- p.167 / Chapter 6.3.2 --- Proof of Type I Queries on Expressions with Logical Con- nectives --- p.172 / Chapter 6.3.3 --- General Proof for Type I Queries --- p.174 / Chapter 6.4 --- Proofs for Type II Queries --- p.175 / Chapter 6.4.1 --- Proof for Type II Queries on Single Predicate Expressions --- p.176 / Chapter 6.4.2 --- Proof for Type II Queries on Disjunctions --- p.178 / Chapter 6.4.3 --- Proof for Type II Queries on Conjunctions --- p.179 / Chapter 6.4.4 --- General Proof for Type II Queries --- p.181 / Chapter 6.5 --- Proof for Queries Involving Virtual Objects --- p.182 / Chapter 6.6 --- Uniqueness and Finite Termination of PIN Queries --- p.183 / Chapter 6.7 --- Chapter Summary --- p.184 / Chapter 7 --- Lifschitz's Benchmark Problems --- p.185 / Chapter 7.1 --- Structure --- p.186 / Chapter 7.2 --- Default Reasoning --- p.186 / Chapter 7.2.1 --- Basic Default Reasoning --- p.186 / Chapter 7.2.2 --- Default Reasoning with Irrelevant Information --- p.187 / Chapter 7.2.3 --- Default Reasoning with Several Defaults --- p.188 / Chapter 7.2.4 --- Default Reasoning with a Disabled Default --- p.190 / Chapter 7.2.5 --- Default Reasoning in Open Domain --- p.191 / Chapter 7.2.6 --- Reasoning about Unknown Exceptions I --- p.193 / Chapter 7.2.7 --- Reasoning about Unknown Exceptions II --- p.194 / Chapter 7.2.8 --- Reasoning about Unknown Exceptions III --- p.196 / Chapter 7.2.9 --- Priorities between Defaults --- p.198 / Chapter 7.2.10 --- Priorities between Instances of a Default --- p.199 / Chapter 7.2.11 --- Reasoning about Priorities --- p.199 / Chapter 7.3 --- Inheritance --- p.200 / Chapter 7.3.1 --- Linear Inheritance --- p.200 / Chapter 7.3.2 --- Tree-Structured Inheritance --- p.202 / Chapter 7.3.3 --- One-Step Multiple Inheritance --- p.203 / Chapter 7.3.4 --- Multiple Inheritance --- p.204 / Chapter 7.4 --- Uniqueness of Names --- p.205 / Chapter 7.4.1 --- Unique Names Hypothesis for Objects --- p.205 / Chapter 7.4.2 --- Unique Names Hypothesis for Functions --- p.206 / Chapter 7.5 --- Reasoning about Action --- p.206 / Chapter 7.6 --- Autoepistemic Reasoning --- p.206 / Chapter 7.6.1 --- Basic Autoepistemic Reasoning --- p.206 / Chapter 7.6.2 --- Autoepistemic Reasoning with Incomplete Information --- p.207 / Chapter 7.6.3 --- Autoepistemic Reasoning with Open Domain --- p.207 / Chapter 7.6.4 --- Autoepistemic Default Reasoning --- p.208 / Chapter 8 --- Comparison with PROLOG --- p.214 / Chapter 8.1 --- Introduction of PROLOG --- p.215 / Chapter 8.1.1 --- Brief History --- p.215 / Chapter 8.1.2 --- Structure and Inference --- p.215 / Chapter 8.1.3 --- Why Compare PIN with Prolog --- p.216 / Chapter 8.2 --- Representation Power --- p.216 / Chapter 8.2.1 --- Close World Assumption and Negation as Failure --- p.216 / Chapter 8.2.2 --- Horn Clauses --- p.217 / Chapter 8.2.3 --- Quantification --- p.218 / Chapter 8.2.4 --- Build-in Functions --- p.219 / Chapter 8.2.5 --- Other Representation Issues --- p.220 / Chapter 8.3 --- Inference and Query Processing --- p.220 / Chapter 8.3.1 --- Unification --- p.221 / Chapter 8.3.2 --- Resolution --- p.222 / Chapter 8.3.3 --- Computation Efficiency --- p.225 / Chapter 8.4 --- Knowledge Updating and Consistency Issues --- p.227 / Chapter 8.4.1 --- PIN and AGM Logic --- p.228 / Chapter 8.4.2 --- Knowledge Merging --- p.229 / Chapter 8.5 --- Chapter Summary --- p.229 / Chapter 9 --- Conclusion and Discussion --- p.230 / Chapter 9.1 --- Conclusion --- p.231 / Chapter 9.1.1 --- General Structure --- p.231 / Chapter 9.1.2 --- Representation Power --- p.231 / Chapter 9.1.3 --- Inference --- p.232 / Chapter 9.1.4 --- Dynamic Update and Consistency --- p.233 / Chapter 9.1.5 --- Soundness and Completeness Versus Efficiency --- p.233 / Chapter 9.2 --- Discussion --- p.234 / Chapter 9.2.1 --- Different Selection Criteria --- p.234 / Chapter 9.2.2 --- Link Order --- p.235 / Chapter 9.2.3 --- Inheritance Reasoning --- p.236 / Chapter 9.3 --- Future Work --- p.237 / Chapter 9.3.1 --- Implementation --- p.237 / Chapter 9.3.2 --- Application --- p.237 / Chapter 9.3.3 --- Probabilistic and Fuzzy PIN --- p.238 / Chapter 9.3.4 --- Temporal Reasoning --- p.238 / Bibliography --- p.239
|
442 |
Implementation of Some Finite Difference Methods for the Pricing of Derivatives using C++ Programming.Ampadu, Ebenezer 18 May 2007 (has links)
In this project,European Call and Put options,and also American Call and Put options have been priced by some finite difference methods using the C++ programming language.The report describes the following:The theory behind the pricing of options,some pricing methods,and how some finite difference pricing methods have been implemented in C++.
|
443 |
A Runtime Software Visualization EnvironmentKurtz, Benjamin L 15 July 2002 (has links)
"As software systems become more complex, so does the task of understanding them. To modify even a simple component of a complex system, at least a rudimentary understanding of the structure and behavior of the whole system is necessary. Although currently available development tools can provide a static representation of a complex system, these utilities are severely limited and prohibitively expensive. As a result, most programmers working on large software systems today resort to classic debuggers and time-consuming plain-text searches through hundreds or thousands of source files. This proposal describes a software development environment that uses static representations of hierarchically structured source code side by side with dynamic visualizations of software systems as they run. This environment provides an intuitive, visual means of easily comprehending complex systems, and has been provided as an open-source development tool for both professionals and students of software engineering."
|
444 |
Formalization and Verification of Rewriting-Based Security PolicesVeselinov, Roman Nikolov 30 April 2008 (has links)
Term rewriting -- an expressive language based on equational logic -- can be used to author and analyze policies that are part of an access control system. Maude is a simple, yet powerful, reflective programming language based on term rewriting that models systems along with the subjects, objects and actions within them. We specify the behavior of the system as a theory defined by conditional rewrite rules, and define the access control policy as an equational theory in a separate module. The tools that Maude provides, such as the Maude Model Checker and the Sufficient Completeness Checker, are used to reason about the behavior and verify properties of access control systems in an automated manner.
|
445 |
A sequential PASCAL manual for FORTRAN programmersRawlinson, Jerry Dean January 2010 (has links)
Typescript, etc. / Digitized by Kansas Correctional Industries
|
446 |
User's guide for the rational FORTRAN pre-processor software packageFloyd, Benzell January 2010 (has links)
Typescript, etc. / Digitized by Kansas Correctional Industries
|
447 |
Solo32, a Concurrent Pascal operating system with UNIX interfacesWilde, Martin January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
448 |
Bibliographic system for microcomputer environmentsLee, Wei January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
449 |
Computer controlled deep level transient spectroscopy systemMehta, Hemant January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries / Department: Electrical and Computer Engineering.
|
450 |
Adapting a portable SIMULA compiler to Perkin-Elmer computers in a UNIX environmentDietrich, Gregory L January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries / Department: Computer Science.
|
Page generated in 0.0749 seconds