• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 11
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Resistance of a granular medium to normal impact of a rigid projectile

Hakala, W. W. January 1965 (has links)
This dissertation is a study of vertical penetration of right-cylindrical projectiles into dry granular soil (Ottawa sand). Rigid projectiles were impacted into the soil at velocities less than 1000 ft/sec. Past theories for predicting penetration in soils have almost exclusively been based upon the impact velocity and the corresponding maximum penetration. In this research, the motion of the projectile during the penetration process was obtained by utilizing microwaves. The motion characteristics were obtained by "bouncing" microwave signals from the bottom of the projectile as it moved downward, and recording the information on an Ampex CP 100 magnetic tape recorder. It was found that penetration of the projectiles into the granular media could successfully be predicted by expressing the resisting forces on the projectile by -M dv/dt = Av² + Cz + D v > v<sub>c</sub> and by -M dv/dt = Bv + Cz + D 0 < v < v<sub>c</sub> where M = mass of projectile V = velocity of projectile at time t z = depth of penetration at time t A,B,C,D = constant coefficients. v<sub>c</sub> is a critical velocity at which the "flow'' of the soil changes from one regime to the other, and is believed to be related to the energy necessary for comminution of the sand particles. The static coefficients, C and D can be found from the strength properties of the soil (c, φ and y) or from a static penetration test. A linear relationship was found between the static resistance, C , and the dynamic resistance coefficient, B. The value of A is believed to be related to the comminution energy, and is not greatly affected by density changes in the sand. The stability of the projectile was found to be an important factor in the values of the penetration forces. / Ph. D.
32

An analysis of the aerodynamics of a fiber optic mortar projectile

Robertson, Edward Angus January 1989 (has links)
In December of 1987 tests were conducted in the Virginia Tech Stability Wind Tunnel on a full-scale model of a fiber optic mortar projectile. The desired model configurations were sting-mounted on the Stability Tunnel STO-1 strain gauge balance. The sting was mounted on a streamlined vertical pylon which provided remote rotation in both pitch and yaw while maintaining the center of the balance along the tunnel centerline. The model inputs included the six-component force and moment data in body coordinates and the pressure data from the five pressure taps located within the model. The tunnel inputs were the static temperature, static pressure, and dynamic pressure. The angle of attack and yaw angle were input manually by the tunnel operator. The data analysis for the preliminary test program was intended to define the aerodynamic qualities of various components and configurations to aid in the redesign of the projectile. / Master of Science / incomplete_metadata
33

Modélisation et validation expérimentale du canal de transmission radio sol-projectile pour la conception d'un transceiver numérique / Modeling and experimental validation of a base-prjectiles channel model for the conception of a digital transceiver

Milla Peinado, Manuel 19 December 2018 (has links)
Cette thèse résume trois années de travail dans le domaine de la caractérisation large bande du canal radio pour des applications projectiles. L’instrumentation des projectiles évolue avec la miniaturisation de l’électronique et l’accroissement constant de ses performances. L’échange de données par liaison sans fil bi-directionnelle entre le projectile et lastation de base doit s’effectuer aussi efficacement que possible. Afin de répondre à cette exigence, il est fondamental d’optimiser chaque élément de la chaîne de communication. Le canal, qui est le support où la propagation des ondes radio prend place, est l’un des éléments à modéliser.Dans le but de caractériser le canal radio pour ces applications, cette thèse a été structurée en cinq chapitres: dans les premier et deuxième chapitres, le contexte général de la thèse est présenté, introduisant le cadre de la thèse et donnant les éléments nécessaires pour comprendre le reste du manuscrit. Au chapitre trois, nous abordons le problème du développement des briques nécessaires pour caractériser le canal de propagation. Une des contributions de cette thèse est la définition d’un ensemble de procédures pour effectuer une modélisation de canal. Au chapitre quatre et cinq, nous présentons nos résultats. Alors qu’au chapitre quatre une étude préliminaire du canal est effectuée, une caractérisation complète est donnée au chapitre cinq. Les chapitres se terminent par la présentation d’un modèle de canal dédié aux simulations de communications numériques afin d’améliorer la liaison avec le projectile. Dans une dernière étape, les conclusions et les questions ouvertes sont détaillées. / This thesis summarizes three years of work in the field of wideband characterization of the radio channel in projectile applications. The popularization of the miniaturized electronics has allowed the instrumentation of projectiles. The information gathered by the onboard sensors needs to be sent from the projectile to the base station as efficiently as possible by means of bi-directional communication links. In order to fulfill this requirement, it is fundamental to optimize every element in the communication chain. The channel, which is the medium where the radio wave propagation takes places, is one of the elements to be modeled. With the purpose of characterizing the radio channel in projectile applications, this thesis has been structured in five chapters: in chapter one and two, the general context of the thesis is presented, introducing the reader to this topic and giving the necessary elements to understand the rest of the manuscript. In chapter three, we address the problem of developing the necessary elements in order to characterize the propagation channel. The first contribution of this thesis is found here in the form of a set of procedures to perform channel modeling. In chapter four and five, we present our results. While chapter in chapter four a preliminary study of the channel is performed, in chapter five a complete characterization is given. The chapters ends with the presentation of the second contribution of this thesis, i.e.a channel model to be used in simulations in order to improve the projectile communication link. In a last stage, the conclusions and open questions are detailed.
34

The Effect of Projectile Nose Shape on the Formation of the Water Entry Cavity

Ellis, Jeremy Conrad 01 June 2016 (has links)
This research focuses on the effect of several convex and concave nose shapes on cavity formation for both hydrophilic and hydrophobic projectiles. It specifically investigates the effect of convex shape on the threshold velocity for cavity formation as well as the effect of concave shapes on cavity formation in terms of impact velocity, geometry of the concave shape and wettability of the projectile. For the convex cases, the streamlined axisymmetric shape significantly increases the threshold velocity when cavities form and is most pronounced for the ogive and cone. The study demonstrates that measuring the wetting angle and impact velocity is not enough to predict cavity behavior, rather the roughness and nose shape must also be taken into consideration for convex projectiles. For the concave cases, the cavities formed are highly influenced by impact speed and nose shape. Wetting angle did not have any visible effect on the cavity formed at higher impact speeds (7 m/s). The dynamics of the cavity formation are dominated by the pocket of trapped air formed when the concave projectiles impact the water. At low impact speeds (~0-1 m/s) the trapped air can separate the flow from the leading edge of the projectile nose when venting out and cause a large cavity to form, depending on the specific concave shape and speed. At moderate impact speeds (1-4 m/s) the trapped air will vent completely underwater forming a small ring-shaped cavity. At high impact speeds (4-10 m/s) the trapped pocket of air compresses tremendously and causes an unsteady pressure pulse, which can result in the formation of a bubble and jet in front of the cavity. The jet is formed by water passing behind the pocket of trapped air along the walls of the concave nose and converging into a jet at the top of the concave shape and entraining the trapped air as it descends.
35

Improvement of Electromagnetic Railgun Barrel Performance and Lifetime by Method of Interfaces and Augmented Projectiles

Pavlov, Aleksey D 01 June 2013 (has links)
Several methods of increasing railgun barrel performance and lifetime are investigated. These include two different barrel-projectile interface coatings: a solid graphite coating and a liquid eutectic indium-gallium alloy coating. These coatings are characterized and their usability in a railgun application is evaluated. A new type of projectile, in which the electrical conductivity varies as a function of position in order to condition current flow, is proposed and simulated with FEA software. The graphite coating was found to measurably reduce the forces of friction inside the bore but was so thin that it did not improve contact. The added contact resistance of the graphite was measured and gauged to not be problematic on larger scale railguns. The liquid metal was found to greatly improve contact and not introduce extra resistance but its hazardous nature and tremendous cost detracted from its usability. The simulated resistivity augmented projectiles were able to mitigate harmful current build-up on the back of a projectile using different conductivity gradients. Within the range of conductivity of aluminum alloys no simulated gradient was able to fully level the current density, however, once the range was expanded to include the lower conductivity of titanium, nearly uniform current density was achieved.
36

Secondary ion emission from

Rickman, Richard Dale 30 September 2004 (has links)
Some collision cascades, induced by keV polyatomic projectiles, result in the emission of multiple secondary ions. Such co-emissions imply that the ejecta originate from molecules co-located within the nano-volume perturbed by a single projectile impact. The relevance for the chemical analysis of nano-domains depends on the effectiveness of the projectile to cause co-emission of two or more secondary ions. This research examines how projectile characteristics, i.e. the energy and number of constituent atoms in the projectile, influence multiple secondary ion emission, or "superefficient" events. In addition we examine the relevance of this technique for nanostructure investigation. Yields have been measured for multi-ion emission events as a function of projectile characteristics. The data show that some collision cascades are "superefficient". For example, in a four-ion emission event, the yield for the phenylalanine quasi-molecular ion is two orders of magnitude larger from Au4+ impacts than from equal velocity Au+ projectiles. Yields for the co-emission of two phenylalanine quasi-molecular ions from "super-efficient" events have been measured. This case is particularly productive in that the detection of two analytically significant ions is recorded from a single event. Large increases (one to two orders of magnitude) in co-emitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the co-emission of two Ph ions, their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles. Finally, we use this methodology to investigate surface structural effects on the occurrence of "super-efficient" events. The results indicate that it is possible to distinguish between two phases of a chemical compound although the stoichiometry remains the same. These results confirm previous predictions concerning the chemical nature of these "super-efficient" events. Also shown is that they are sensitive to the surface nanoenvironment. This approach extends the technology of Secondary Ion Mass Spectrometry by providing a methodology for probing surface nano-domains at the sub100 nm level.
37

A Top-Down, Hierarchical, System-of-Systems Approach to the Design of an Air Defense Weapon

Ender, Tommer Rafael 07 July 2006 (has links)
Systems engineering introduces the notion of top-down design, which involves viewing an entire system comprised of its components as a whole functioning unit. This requires an understanding of how those components efficiently interact, with optimization of the process emphasized rather than solely focusing on micro-level system components. The traditional approach to the systems engineering process involves requirements decomposition and flow down across a hierarchy of decision making levels, in which needs and requirements at one level are transformed into a set of system product and process descriptions for the next lower level. This top-down requirements flow approach therefore requires an iterative process between adjacent levels to verify that the design solution satisfies the requirements, with no direct flow between nonadjacent hierarchy levels. This thesis introduces a methodology that enables decision makers anywhere across a system-of-systems hierarchy to rapidly and simultaneously manipulate the design space, however complex. A hierarchical decision making process will be developed in which a system-of-systems, or multiple operationally and managerially independent systems, interact to affect a series of top level metrics. This takes the notion of top-down requirements flow one step further to allow for simultaneous bottom-up and top-down design, enabled by the use of neural network surrogate models to represent the complex design space. Using a proof-of-concept case study of employing a guided projectile for mortar interception, this process will show how the iterative steps that are usually required when dealing with flowing requirements from one level to the next lower in the systems engineering process are eliminated, allowing for direct manipulation across nonadjacent levels in the hierarchy. For this system-of-systems environment comprised of a Monte Carlo based design space exploration employing rapid neural network surrogate models, both bottom-up and top-down design analysis may be executed simultaneously. This process enables any response to be treated as an independent variable, meaning that information can flow in either direction within the hierarchy.
38

Secondary ion emission from “super-efficient” events: prospects for surface mass spectrometry

Rickman, Richard Dale 30 September 2004 (has links)
Some collision cascades, induced by keV polyatomic projectiles, result in the emission of multiple secondary ions. Such co-emissions imply that the ejecta originate from molecules co-located within the nano-volume perturbed by a single projectile impact. The relevance for the chemical analysis of nano-domains depends on the effectiveness of the projectile to cause co-emission of two or more secondary ions. This research examines how projectile characteristics, i.e. the energy and number of constituent atoms in the projectile, influence multiple secondary ion emission, or "superefficient" events. In addition we examine the relevance of this technique for nanostructure investigation. Yields have been measured for multi-ion emission events as a function of projectile characteristics. The data show that some collision cascades are "superefficient". For example, in a four-ion emission event, the yield for the phenylalanine quasi-molecular ion is two orders of magnitude larger from Au4+ impacts than from equal velocity Au+ projectiles. Yields for the co-emission of two phenylalanine quasi-molecular ions from "super-efficient" events have been measured. This case is particularly productive in that the detection of two analytically significant ions is recorded from a single event. Large increases (one to two orders of magnitude) in co-emitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the co-emission of two Ph ions, their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles. Finally, we use this methodology to investigate surface structural effects on the occurrence of "super-efficient" events. The results indicate that it is possible to distinguish between two phases of a chemical compound although the stoichiometry remains the same. These results confirm previous predictions concerning the chemical nature of these "super-efficient" events. Also shown is that they are sensitive to the surface nanoenvironment. This approach extends the technology of Secondary Ion Mass Spectrometry by providing a methodology for probing surface nano-domains at the sub100 nm level.
39

Prediction of electromagnetic launcher behavior with lubricant injection through armature-rail interface modeling

Swope, Kory A. 26 March 2010 (has links)
Electromagnetic launchers are currently being developed for their use as military weapons. These devices launch a projectile to extremely high speeds using very large electric currents. One obstacle facing the development of electromagnetic launchers is damage to the rails and armature during launch. The damage occurs due to current arcing in the armature-rail interface and is denoted as a transition. One solution is to use a lubricant injection system contained inside the armature to provide a conductive lubricant to the interface. The lubricant will ensure good electrical contact, prevent solid-solid contact, and cool the interface to prevent a launch from transitioning. Various different armature designs are currently under development. Each design must be analyzed through armature-rail interface modeling in order to predict the physical behavior and identify causes of transitions. There have been many studies on the physical behavior of sliding contacts. Some of which are directly applied to electromagnetic launch. In particular the magneto-elastothermohydrodynamic model is the most comprehensive model found for use in simulating electromagnetic launch. It includes calculation of the electromagnetic field, elastic deformation of the armature, calculation of the armature temperature history, and a hydrodynamic study of the lubricant both in the injection system and the armature-rail interface. The magneto-elastothermohydrodynamic model has been applied to only one armature design with limited success due to the assumptions used. The magneto-elastothermohydrodynamic model is applied to six different armature designs each requiring modifications to be made in order to predict the distinct behavior of each launcher. Modifications to the model include consideration of turbulent flow in the injection conduit, unique injection configurations, dry-out of the armature-rail interface, two dimensional pressure fields, and analyses of cylindrical bore launcher designs. The results show the model is effective in predicting when a transition will occur and what physical event leads to a transition when compared to experimental launch data. Additionally, experimental observations are used to affirm the simulation of other physical characteristics. It is found by the simulation that the base case armature is successful in preventing a transition of the shot, which is consistent with the experimental results. The simulation of NRL shot 223 reveals that such a small amount of lubricant is supplied by the reservoirs that the armature-rail interface partially dries out making a transition likely at a time of 4.7 ms; agreeing with the experimentally observed transition at a time of 4.5 ms. It is determined that the transition of NRL shot 406 is not due to a lack of lubricant inside the interface and that the amount of lubricant which leaks from the joint is negligible. IAP shot 7 did not transition in the experiment, however, after a time of about 3.5 ms the muzzle voltage began to rise. The simulation presents a possible explanation, showing that the armature-rail interface is beginning to empty out after 4.2 ms. The simulation of the GTL-2-4C armature shows that the experimentally observed transition is caused by the reservoirs emptying out at about 2.1 ms. The exploratory simulation of a modified GTL-2-4C armature determines that the absence of the slit in the armature trailing edges will not prevent the transition nor extend the successful portion of the shot.
40

Suboptimal period design for a maneuvering missile to evade tracking filters

Lai, Lin-Ying January 1988 (has links)
The engagement between an antiship missile and a ship’s defense system is investigated. The missile is equipped with proportional navigation guidance for homing in on its ship target. The ship’s defense system consists of a radar, an estimation system (the extended Kalman filter and the “jump filter” are used), and a gun system. The performance index is defined as the estimated number of hits (EHITS) of projectiles on the missile. The main objective of this dissertation is to determine maneuvering periods for the missile which minimize the EHITS to evade the ship’s gunfire under different engagement conditions. The maneuvering periods are design parameters in the missile’s controls of both the vertical and the horizontal planes. The engagement conditions are the follows: the maximum amplitude of the maneuvering functions, the homing in position of the missile on the ship, the measurement noise condition of the ship’s radar, and the missile’s model assumed in the ship’s filters. The missile’s control functions considered are periodic and of specific types (sinusoidal, square and sawtooth waveforms); therefore, the periods which minimize the EHITS in this study are suboptimal for the general engagement problem. Two methods are used to obtain the suboptimal periods: one is the ”brute force" method of computing the EHITS for certain equally spaced periods, the other uses an optimization software to search for the minimum point. The results show that the curve of EHITS vs. period is monotonically decreasing until it reaches a minimum point. The optimal period increases with an increase in measurement noise. Among the three waveforms used, the square wave gives the smallest optimal period and the sawtooth wave gives the largest one. The sinusoidal waveform with the period of 1.9 seconds is recommended. We consider the missile's performance against a perfect radar, a modern radar, and an earlier model radar. The optimum EHITS resulting from the optimal periods are between two and three EHITS for all three radars considered. / Ph. D.

Page generated in 0.0455 seconds