Spelling suggestions: "subject:"apropagation"" "subject:"depropagation""
531 |
Propagation measurements and system design for long-range RF tagsKim, Daeyoung 12 1900 (has links)
No description available.
|
532 |
Surface immobilization of plant cellsArchambault, Jean January 1987 (has links)
A novel technique was developed to immobilize plant cells. The cells are deposited on a surface of man-made fibrous material which provides for strong binding of the plant tissue biomass growing in the submerged culture. It was shown that the plant cells need to be fully viable for the attachment process to occur. / The scale-up of this technique to laboratory size specifically designed bioreactors was performed successfully. The cell immobilizing matrix was formed into a vertical spirally wound configuration to provide for a high immobilizing area-to-volume ratio (0.8-1.2 cm$ sp{-1}$). A modified airlift (riser-to-downcomer area ratio of 0.03 and vessel height-to-diameter (H/D ratio of 3) and a low H/D ($ sim$1.5) mechanically stirred vessel delivered the optimum bioreactor performance characterized by low foaming of the broth and highly efficient plant cell attachment and retention ($ geq$96%). / The growth of Catharantus roseus plant cells was investigated in these bioreactors. This process was found not to be mass transfer limited above minimal mild mixing and aeration levels ensuring sufficient supply of nutrients, especially oxygen (k$ sb{ rm L}$a $ sim$ 10-15 h$ sp{-1}$) to the immobilized biomass. / The gentle surface immobilization technique developed in this work did not hinder the biosynthesis potential of the SIPC. In fact, it appeared to induce a partial secretion of some valuable compounds into the culture medium. The mildness, easiness, efficiency, mass transfer characteristics, scale-up potential and biomass loading capacity (11-13 g d.w./L) of the surface immobilization technique make it superior to all other immobilization techniques used to culture plant cells. In addition, its bioreactor overall biomass concentration compares favourably to suspended plant cell concentrations attainable in bioreactors (15-20 g d.w./L).
|
533 |
SEXUAL AND ASEXUAL REPRODUCTIVE CHARACTERISTICS OF THE NORTH AMERICAN PAWPAW [<i>ASIMINA TRILOBA</i> (L.) DUNAL]Crabtree, Sheri Beth 01 January 2004 (has links)
The North American Pawpaw [Asimina triloba (L.) Dunal] shows great potential as a new fruit crop. Kentucky State University in Frankfort, Ky. is the site for the USDA National Clonal Germplasm Repository (NCGR) for Asimina species. Both the fruit and the trees themselves are of high value to growers and nursery producers. Pawpaw cultivars are currently propagated by grafting or budding onto seedling rootstock; no method currently exists to clonally propagate pawpaw on its own roots. Three methods of layering were attempted in this study to clonally propagate pawpaw: trench layering, pot layering, and mound layering. Both trench layering and pot layering experiments showed the importance of both juvenility and auxin application in adventitious rooting of pawpaw. Although rooting of more mature pawpaw shoots in these experiments did not exceed 30%, these propagation methods were more successful then previous attempts at rooting more mature pawpaw stems. Mound layering was less successful, but an easierto-root genotype of pawpaw in the KSU-USDA NCGR for Asimina spp. was discovered that may show promise for future propagation studies.
Diversity in reproductive characteristics of pawpaw was also assessed in this study. Accessions in the KSU-USDA repository orchard collected from six different geographic regions were selected and trunk cross sectional area, total number of flowers, length of flowering, flowering peak, fruit set, total number of clusters, total number of fruit, number of fruit per cluster, average fruit weight, yield by weight, yield efficiency, length of harvest, harvest peak, and growing degree days required for ripening were evaluated. Significant differences were found among the regions in most of the characteristics evaluated. Correlations were also found between several vegetative and reproductive characteristics. This indicates that a significant level of reproductive diversity exists within KSUs repository collection, and between pawpaws collected from different regions of the native range.
|
534 |
Développement d'une procédure non intrusive basée sur la propagation des ondes élastiques pour l'évaluation de l'état des structures en béton enfouies du réseau de distribution d'hydro-QuébecTremblay, Simon-Pierre January 2013 (has links)
Particulièrement en milieu urbain, il est maintenant commun de retrouver de nombreuses infrastructures enfouies sous terres afin d'en minimiser l'impact social et environnemental. À titre d'exemple, en 2008, la proportion de nouveaux clients alimentés par le réseau souterrain d'Hydro-Québec a atteint près de 30 % (Hydro-Québec, 2011). Bien que les structures souterraines soient à l'abri de certaines intempéries auxquels celles en surface sont soumises, elles se trouvent néanmoins souvent dans un environnement favorisant leurs dégradations au fils du temps. Vu l'impact que ces structures ont sur le bon déroulement des activités quotidiennes de millions de personnes, il est primordial que ces structures soient en tout temps fonctionnelles afin d'assurer le bien-être et la sécurité du public qui est souvent dépendante de ces structures. Cependant, l'invisibilité de ces structures depuis la surface du sol peut parfois causer de nombreux problèmes lorsque vient le temps de les inspecter. En effet, les méthodes d'inspections actuellement utilisées sont souvent inadéquates et couteuses particulièrement en milieu urbain. C'est pourquoi l'IREQ (Institue de Recherche d'Hydro-Québec), en partenariat avec l'Université de Sherbrooke visent à développer une nouvelle méthode d'inspection non intrusive et réalisable depuis la surface du sol permettant d'évaluer l'intégrité structurelle des structures souterraines. Cette nouvelle méthode d'inspection est basée sur la propagation des ondes élastiques dans le sol émises depuis une source d'impact mécanique. Ce mémoire de maîtrise présente donc cette nouvelle méthode d'inspection élaborée à partir des résultats obtenus à 1'aide de simulations numériques puis testée et améliorée à la suite d'essais réalisés sur six différentes structures souterraines construites sur le site de l'IREQ. Dans le but vérifier la précision de la méthode proposée, l'état de dégradation exacte de ces six structures souterraines n'est connu que par Hydro-Québec. À la lumière des résultats obtenus à la suite de l'inspection de ces 6 structures souterraines, il fut possible d'établir l'état de chacune de ces structures de béton. Les conclusions établies à l'aide de la méthode proposée qu'en à l'état de ces structures furent ensuite présentées à Hydro-Québec qui en conclu que la méthode proposée a le potentiel d'identifier de façon préliminaire l'état de dégradation de ces 6 structures.
|
535 |
Model of a Wave Diode in a Nonlinear SystemJohansson, Erik January 2014 (has links)
In this diploma work, two versions of the discrete nonlinear Schrödinger (DNLS) equation are used to model a nonlinear layered photonic crystal system; the cubic DNLS (cDNLS) equation and the saturable DNLS (sDNLS) equation. They both have site-dependent coefficients to break mirror symmetry with respect to propagation direction, as well as to describe the linear and nonlinear properties of the system. Analytical solutions taking on plane wave form are, via the backward transfer map, used to derive a transmission coefficient as well as a rectifying factor to quantify the diode effect. The effect of varying site-dependent coefficients is studied in detail. Numerical simulations of Gaussian wave packets impinging on the system, using open boundary conditions, show the breaking of parity symmetry. Evidence of a change in the wave packet dynamics occurring in the transition between the cubic and the saturable DNLS model is presented. A saturated system prevents the wave packet from getting stuck in the nonlinear lattice layers. The transmission properties were found to be very sensitive to slight changes of the system parameters.
|
536 |
Title: Study of anomalous VLF perturbations in possible relation to seismic activity.Brijraj, Sahil. January 2011 (has links)
Anomalous perturbations of the ionosphere have been observed either as
uctuations in the critical
frequency of the F-region ionosphere, foF2, or as
uctuations in the nighttime VLF signals that propagate
through the Earth Ionosphere Waveguide. All anomalies appear from an earliest of three weeks to one
day prior to an earthquake occurrence, hence leading to be used as possible presursors and aid in short
term earthquake prediction. Earthquakes of magnitude 5.5 and greater have a signi cant chance of
having associated ionospheric anomalies, and anomalies are only detected within a radius of 500km from
the epicentre. Solar events, however, greatly a ect the ionosphere and make seismogenic ionospheric
signals di cult to isolate. This study concentrates on anomalous VLF signal perturbations observed
along the propagation path between the NWC transmitter in Australia and narrowband receivers in
Budapest and Tihany, Hungary for July 2007 to February 2008. Comparisons of anomaly appearances
and seismic activity occurring within the Dobrovolsky area to the propagation path were carried out,
with anomalies being observed predominantly prior to major seismic events. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
537 |
Spatial characterization of the natural mechanical vibrations occurring in-vivo during isometric contractions of the biceps brachii muscle: towards passive elastography of skeletal musclesArcher, Akibi A. A. 24 August 2012 (has links)
Noninvasive viscoelasticity imaging, or “dynamic elastography”, methods have recently been developed to objectively quantify the local viscoelastic properties of soft tissues by measuring the local propagation velocity of mechanical shear vibrations (e.g. faster velocity indicates stiffer material). But, the existing elastography technologies require a potentially uncomfortable external mechanical stimulation (e.g. vibrations probe) to induce muscle vibrations; and sophisticated and expensive imaging equipments (such as MRI and ultrafast ultrasound elastography), involving complex signal processing, to record and analyze these muscle vibrations. The work in this dissertation lays the foundation for the development of a low cost, passive, non-invasive elastography by analyzing and processing Surface Mechanomyograms (S-MMGs) measured with one dimensional accelerometers from the biceps brachii muscle. Aim 1 of this dissertation focused on the 3-dimensional aspect of vibrations measured by accelerometers on the skin surface above the biceps brachii. While Aim 2 focused on using one-dimensional accelerometers to determine the propagation direction of the propagating S-MMG waves. Using this newly developed knowledge on S-MMG Aim 3 was accomplished, a method to analyze the propagating wave and develop a metric that can track the changes in the muscle was developed, namely, the coherence length. The coherence length was found to significantly increase with increased contraction levels for all seven of the subjects. Overall the results of this study show that the propagation features of S-MMG vibrations reflect the architecture and contraction level of the biceps brachii muscle. Hence S-MMG could potentially be used for monitoring physiological changes of skeletal muscles.
|
538 |
Measurements of turbulence paramaters and observations of multipath arrivals in two contrasting coastal environments using acoustical scintillation analysisDi Iorio, Daniela 08 December 2014 (has links)
Graduate
|
539 |
An holistic approach to optimal ultra-wideband wireless communications system designMalik, Wasim Q. January 2005 (has links)
Ultra-wideband (UWB) wireless systems rely on signals spanning very wide bandwidths, typically several gigahertz, for information transmission. The distinguishing feature of UWB communications technology is the unrivalled data-rates it provides, with other benefits such as fade resistance and spectral reusability. These characteristics render UWB the technology of choice for a gamut of modern wireless communications applications, including multimedia transmission, personal- and body-area networks, imaging devices, and sensor networks. The use of wide bandwidth signals, however, leads to many complications that necessitate specialised design considerations. The propagation channel and system components acquire frequency-selective characteristics, and their nonlinear and dispersive nature, usually innocuous in a conventional setting, causes signal distortion and erroneous detection. This thesis analyses various aspects of the indoor channel and the distortion to a UWB signal propagating through it. The performance of transmitter and receiver sub-systems is evaluated, with an emphasis on the challenges posed by the large operating bandwidth. The significance of incorporating this knowledge into the system design process is demonstrated, and a novel framework for optimising the performance-complexity tradeoff is presented. • The following are the contributions of this thesis to the state of the art in UWB communications. • Experimental characterisation of the indoor UWB channel spanning the FCC band (3.1-10.6 GHz) • Demonstration of the variability of propagation characteristics in the spectral sub-bands • Assessment of frequency-dependent pathless and the consequent signal waveform distortion • Polarimetric analysis of the temporal, spectral and angular channel evolution • Evaluation of rake receiver performance and its dependence on various channel conditions • Investigation of the effect of antenna angular-spectral distortion on signal propagation • A technique for the normalisation of UWB link aberration due to antennas • Performance evaluation of diversity and spatial multiplexing with multiple-antenna systems • Design of gigabit wireless links for high data-rate applications or high user density scenarios • A novel holistic framework for the design of an optimal UWB communications system.
|
540 |
Wind Turbine Sound Propagation in the Atmospheric Boundary LayerÖhlund, Olof January 2014 (has links)
Wind turbines have grown both in size and number in the past decades. The taller turbines has made it possible to place them in forest areas which is fortunate for a country like Sweden with lots of forest. An issue with wind turbines is the sound they produce. The sound mainly comes from the rotor blades when they pass through the air. The sound heard some distance away from the turbine is sometimes masked by ambient background noise such as wind induced sound in the vegetation, but this is not always the case. Noise concerns among some people living in the vicinity of wind turbines are sometimes raised. Sound propagation models are used to predict the wind turbine sound level at certain distance. It is important that these models are accurate. Sound propagation is greatly influenced by the meteorological conditions. These conditions change over the day and year and vary a lot depending on the terrain conditions. In the past, large meteorological propagation effects have been found for sound sources close to the ground. Higher elevated sources like wind turbines have not been studied as much. One reason for this is that wind turbines are a relatively new sound source. In this thesis the meteorological influence on the wind turbine sound propagation is studied. Continuous simultaneous acoustic and meteorological measurements are performed at two different wind turbine sites during two years to capture all variations in the weather. The two sites are covered by forest, one is flat and the other has shifting terrain. The sites are representative for many locations in Sweden and around the world. The differences between the measured and expected wind turbine sound levels are established for different meteorological categories. The median of all deviations within each meteorological category is then compared. During no snow cover conditions the variation of the median under different meteorological conditions is 6 dBA and during snow cover the variation of the median is 14 dBA. The variations are due to the combined effect of refraction, ground conditions and terrain shape. The deviations from an expected value are seen for all octave bands from 63 Hz to 1000 Hz but are found to most distinct at low frequencies of around 125Hz. Meteorological effects starts to be important somewhere between 400 m and 1000 m from wind turbines.The characteristic "swish" sound from wind turbines are also studied in this thesis. The swish sound or as it is also called, the amplitude modulated sound, is found to be more common under some meteorological conditions such as temperature inversions and downwind conditions. A metric for detection of amplitude modulation duration and strength is proposed. Amplitude modulation, is according to some, the reason why wind turbine sound is perceived as more annoying than other typical environmental sounds at the same sound level. The swishes probably increase the probability to hear the wind turbine sound in presence of other background noise.
|
Page generated in 0.0892 seconds