• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of Age and Sterol-Inhibiting Fungicides on the Sterol and Steryl Ester Composition of SIF Sensitive and Tolerant Non-Target Chlorella Species

Tuckey, Donna M. 22 May 2001 (has links)
1-substituted 1,2,4-triazoles form a class of agricultural chemicals known as sterol-inhibiting fungicides (SIFs). These fungicides function through the inhibition of sterol synthesis, which ultimately affects cell membrane fluidity and permeability. Of the two main types of sterols in plants, free sterols (FSs) are thought to be incorporated into membranes while conjugated sterols such as steryl esters (SEs), hypothetically, regulate homeostasis by inserting or removing FSs from cell membranes under changing environmental conditions. Non-target algae species possess sterol synthesis pathways that are affected by a range of SIFs. One of the main objectives of the current study was to determine the reason for the observed sensitivity of C. fusca and the tolerance of C. kessleri to SIFs relative to total lipid, FS, SE and FFA composition. These parameters were measured using gas chromatography and mass spectroscopy techniques. Both quantitative and qualitative differences in sterol number and type were noted relative to the FS and SE composition of the two species of algae over time. Notably, SEs were detected in both species of algae, although presence and amount varied with the organism. While SEs were more abundant in C. kessleri, higher amounts of FSs were found in C. fusca. The FS/SE ratios were 64/36 and 88/12 percent of the total sterol in C. kessleri and C. fusca, respectively. Treatment of C. fusca with 2, 4, and 6 ppm and C. kessleri with 6,12, and 24 ppm propiconazole caused an accumulation of methylated precursor sterols, resulting in slightly more FSs in both algae. Only 3 of the FSs produced following treatment were different from the control in C. fusca while 9 new sterols were found in C. kessleri. Treatment also altered the SE fraction in both species, with fewer SEs produced compared to the control, but more novel sterols in C. kessleri, suggesting a possible inverse relationship between FSs and SEs in both organisms. Several studies have implicated lipid/sterol concentrations with the potential for cellular bioaccumulation of lipophilic xenobiotics as they relate to membrane permeability. Cell age and environmental parameters can also affect lipid composition of algae. Although cell age did not affect the qualitative sterol composition of C. fusca and C. kessleri, quantitative differences were observed. Plants exposed to chemical and other environmental stresses accumulate free fatty acids (FFAs), which may be linked to biophysical membrane changes. SIF sensitive C. fusca, had inherently higher levels of FFAs than C. kessleri. Qualitatively, C. fusca exhibited higher percentages of 18:1 and lower ratios of 18:2/18:3 FFAs than C. kessleri. In response to increasing SIF treatment, the ratio of 18:2/18:3 FFAs increased in C. kessleri and declined in C. fusca. The amount of total lipid produced in the cells of C. fusca was higher than in C. kessleri during all growth stages. Variations were observed in lipid measured as a percent dry weight compared to lipid/cell as the cultures age. Inherent differences in FS, SE, and lipid composition of C. fusca and C. kessleri as well as age related changes could account for the differences in the susceptibility of the two algae to propiconazole. / Master of Science
2

Integrated Approach to Understanding Tomato Sour Rot and Improving Disease Management on the Eastern Shore of Virginia

Fiedler, Kathryn 26 June 2014 (has links)
Sour rot of tomatoes, caused by Geotrichum candidum, occurs in the field and postharvest settings regularly, although postharvest losses are severe only in some years on the Eastern Shore of Virginia (ESV) and other tomato production regions. Fungicide products and cultural control methods are tested for efficacy utilizing a traditional wounding technique that does not properly reflect natural sour rot infections. A new inoculation technique was optimized for G. candidum using negative pressure to infiltrate the tomato stem scar with pathogenic spores. This new method creates consistently high rates of infection and more successfully creates infections in mature green and breaker fruit. The population of G. candidum on the Eastern Shore of VA (ESV) was characterized using multilocus sequencing technique. The resulting phylogenetic tree defines four distinct groups, including two with uncommon loci that distinguish them from the majority of the population. Thirty-seven G. candidum isolates were inoculated to media amended with ten fungicides and antimicrobial compounds commonly used in tomato production and postharvest treatments. Propiconazole and tebuconazole completely inhibited growth of all colonies. Cultivar trials were conducted to determine if resistance or tolerance to G. candidum occurs. Ten commonly grown round and Roma cultivars on the ESV were similarly susceptible to G. candidum, even at low inoculum levels. Field and postharvest surveys of sour rot on tomato fruit attempted to correlate disease incidence with weather conditions in order to better understand the cause of sporadic infection. Few patterns were seen consistently throughout harvest periods and years. Rainfall was positively correlated with disease 2-3 days before surveys and temperature was negatively correlated with disease 5-7 days before surveys. No in-field weather conditions were correlated with postharvest disease incidence. Greenhouse trials were conducted to assess the influence of water congested tomato fruit on susceptibility to sour rot. Tomato plants were exposed to water inundation to mimic rainfall and varying levels of irrigation, both in order to congest tomato fruit. Though water congestion was achieved, tomato fruit were equally susceptible to sour rot infections. / Ph. D.
3

Využití včelího pylu jako bioindikátoru stavu životního prostředí / The application of pollen as bioindicator of the environmental state

Marečková, Kateřina January 2011 (has links)
Pesticides and their excessive use lead to environmental pollution. Violation of the guidelines for their use disposal of empty containers could lead to contamination of water, soil and poisoning of animals and beneficial insects. Honey bee is useful creature on our planet. Good farming depends entirely on the pollination, but whole vegetal kingdom couldn’t exist it form known and used by mankind. Therefore, rules that protect these useful creatures against inadequate use of pesticides have been developed. This study focuses on the evaluation of the possibility to use bee products as bioindicators of the state of environment. Five active substances which are components of pesticides used in the treatment of agricultural field around Tasovice village were analysed in the pollen and honey. For sample preparation QuEChERS and SPE methods were used, gas chromatography with to mass spectrometric detection was employed as final analytical technique.
4

Decay Fungi from New Zealand Leaky Buildings: Isolation, Identification and Preservative Resistance

Stahlhut, Dirk January 2008 (has links)
Leaky buildings are those that show elevated moisture contents of the framing timber, which can subsequently lead to the establishment of fungal and bacterial decay. Prior to this study, the causative agents of the decay in these leaky buildings were unknown, though it was suspected to be one or more species of decay fungi. Therefore, the overall goal of this multi-disciplinary PhD thesis research was to determine the causative agents of decay in leaky buildings of New Zealand in an effort to develop solutions for both their remediation and future prevention. Use of molecular biology methodology and classical mycological techniques based on morphology enabled identification of decay fungi from framing timber and air samples of leaky New Zealand buildings and provided insight into relative importance based on isolation frequency. In most cases, fungi colonising Pinus radiata D. Don were isolated to produce pure cultures. Mycelia from these cultures on agar media were collected to extract DNA. To identify the fungi to the species level, polymerase chain reaction (PCR) with fungal specific DNA primer pairs were performed followed by DNA sequencing of the internal transcribed spacer (ITS) region. Identification was by BLAST (Basic Local Alignment Search Tool) search on sequences in known GenBanks. In total, 421 samples from leaky buildings were processed, predominately untreated P. radiata decayed framing timber and also fibre cement boards and building paper. From these, sixty-eight fungal identifications were made. The only taxa that were isolated with significant frequency were identified as 4 basidiomycete species, as follows, along with the number of times they were isolated from the 421 samples: • Gloeophyllum sepiarium (Wulf.: Fr.) Karst. 13x • Oligoporus placenta (Fries 1865) Gilb. In Ryv.1985 11x • Antrodia sinuosa (Fr.) Karst. 8x • Gloeophyllum trabeum (Fr.) Murr. 4x Although these species were identified repeatedly, in total they represent less than 10% of the total samples and, therefore, it is concluded that the leaky building decay samples represent high fungal biodiversity. An aerial spore study of internal air, wall cavity air and exterior air of leaky buildings was carried out using a Merck MAS-100 instrument which collects spores directly onto selective media plates. Viable fungal aerial spores were detected at every sampling location tested at the leaky buildings, by the criteria of culturing, with a highest mean of 3714 colony-forming units (CFU) per cubic metre found in the cavities of water-damaged walls. This aerial spore study in conjunction with isolation from decayed wood samples from the same leaky buildings enabled identification of G. sepiarium and A. sinuosa at the same test site. The use of carboxymethylcellulose medium further demonstrated the presence of potential cellulose-degrading fungi within and around the location. Overall, the combination of direct sampling of timber and air sampling proved useful for detection of fungal species variability at a multi-unit building. Four decay fungi isolated from New Zealand leaky buildings and two standard control decay fungi (Coniophora puteana and Serpula lacrymans) were submitted to laboratory wood block testing to determine the effectiveness of currently used wood framing preservatives under laboratory conditions before and after a standard leaching regime. P. radiata blocks were treated with water based boron copper azole and solvent based IPBC propiconazole plus tebuconazole (1:1) preservatives and exposed to the basidiomycetes for 12 weeks. Mass loss for the fungal decay-infected samples was recorded of up to 55% for preservative-treated samples, up to 62% mass loss for leached samples and up to 58% mass loss for un-preservative treated samples. Additionally, well defined dosage responses and approximate toxic thresholds were obtained for all preservatives tested. Results suggested that the minimum IPBC retention specified by Hazard Class 1.2 of NZS3640:2003 (0.025% m/m) is on the low side, and demonstrated after the 2 week leaching regime complete loss of efficacy of boron at 0.4% m/m boric acid equivalent (BAE). This PhD research gave a first overview of fungi occurring in New Zealand leaky buildings, and it demonstrated the following key aspects of wood preservation: 1. The isolated test fungus Antrodia sinuosa was more difficult to control with propiconazole plus tebuconazole at retention 0.007% m/m than the known tolerant fungus Oligoporus placenta; 2. Boron at Hazard Class 1.2 retention of 0.4% m/m BAE was not toxic to Oligoporus placenta; 3. Serpula lacrymans exhibited tolerance to the highest retention of 0.06 %m/m tebuconazole plus propiconazole; and 4. Gloeophyllum species appeared susceptible to all wood preservatives. In order to correlate fungal colonisation and wood decay, colonised wood blocks were studied using light microscopy (LM) and field- emission scanning electron microscopy (FE-SEM). Microscopic observations of P. radiata wood blocks following a standard wood decay test of twelve weeks of fungal colonisation by Serpula lacrymans, Antrodia sinuosa, Oligoporus placenta and Gloeophyllum sepiarium revealed that the two microscopic techniques employed were complementary by allowing features such as pit membranes, chlamydospores or S3/S2 compound middle lamella interface to be photographed in greater detail, allowing for more precise analyses and interpretation of key findings, as follows: 1. Brown rot fungi directly target their apical growth towards degraded pit apetures; 2. Reliance on light microscopy and observed birefringence as a tool to record changes in cell wall crystallinity associated with brown rot decay alone could be misleading; 3. Presence of fine (≤ 1 m) to wide (≥ 3.5 m) bore-hole and hyphal size ranges, and nearly unchanged cell wall thickness of all wood/test fungal combinations, confirmed active decay at moderate to late stages; 4. Some ray parenchyma cells for Antrodia sinuosa, Oligoporus placenta and Gloeophyllum sepiarium colonised blocks were intact throughout late stages of decay, outlining that they were not preferentially degraded early in the brown rot decay process, and 5. Presence of bore-holes, clamp and medallion clamp formation and resting spores (chlamydospores and arthrospores) are fungal specific, can aid in their differentiation and identification, and should be recorded during wood decay studies, as especially resting spores are an important factor when planning remediation strategies. In summary, this PhD thesis research provided the first comprehensive investigation into the biodiversity of fungi from leaky New Zealand buildings, identified the dominant species and presented details about their micromorphology and their decay patterns. It also demonstrated substantial differences in efficacy of preservative formulations currently (December 2008) approved for framing treatments in New Zealand and possible deficiencies where framing may be subjected to severe leaching. This study also provided the first comparative analyses of viable fungal aerial spores between leaky wall cavities and the surrounding air environment. Subsequently, this research added to the knowledge of the decay fungal species diversity in and around New Zealand leaky buildings, outlined their capabilities to degrade treated and un-treated P. radiata framing timber and illustrated the efficacy of New Zealand approved wood preservatives for their potential as remedial treatment and future prevention.

Page generated in 0.0343 seconds