• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 111
  • 17
  • 1
  • Tagged with
  • 474
  • 474
  • 235
  • 234
  • 92
  • 91
  • 71
  • 65
  • 60
  • 50
  • 40
  • 39
  • 37
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Effect of cell size on the quasi-static compressive properties of silicone foams with spherical closed cells

Zamanishourabi, Solmaz 20 July 2021 (has links)
Dans ce travail, l'effet de la taille des cellules sur les propriétés de compression des mousses de caoutchouc de silicone avec des cellules sphériques a été étudié expérimentalement. Les mousses ont été fabriquées en utilisant une résine de silicone et des billes de polystyrène expansé (EPS) par une nouvelle technique. Les billes ont été mélangées avec la résine réactive et le mélange a été laissé à température ambiante jusqu'à ce que la résine soit durcie. Ensuite, le matériau solidifié a été chauffé pour rétracter les billes et former la structure cellulaire. Trois mousses différentes avec des tailles de cellules différentes, allant d'environ 1 mm à environ 2 mm, ont été fabriquées et testées sous compression quasi-statique. Pour chaque échantillon, le module de compression par rapport au poids et la résistance à la compression par rapport au poids ont été obtenus. Enfin, ces valeurs ont été comparées entre elles pour déterminer l'effet de la taille des cellules sur les propriétés de compression. Les résultats montrent que l'augmentation de la taille des cellules augmente la rigidité. Par exemple, l'augmentation de la taille des cellules de 1 mm à 1,5 mm à densité constante (480 kg/m³) augmente le module de compression de 17%, tandis que la contrainte de compression à 50% de déformation augmente de14%. De tous les résultats obtenus, on peut conclure que parmi les mousses de caoutchouc à cellules fermées ayant la même composition de matrice et des densités similaires, mais des tailles d'alvéoles différentes, celle ayant la plus petite taille d'alvéole donne les propriétés de compression les plus faibles par rapport au poids, tandis que celle ayant la plus grande taille d'alvéole donne le rapport le plus élevé lorsqu'elles sont lentement comprimées. / In this work, the effect of cell size on the compressive properties of silicone rubber foams with spherical cells was experimentally studied. The foams were made using a silicone resin and expanded polystyrene beads (EPS) through a novel technique. The beads were mixed with the reactive resin and the mixture was left at room temperature until the resin was cured. Then, the solidified material was heated up to shrink down the beads to form the cellular structure. Three different foams with different cell sizes, ranging from about 1 mm to about 2 mm,were made and tested under quasi-static compression. For each sample, the compressive modulus to weight ratio and compressive strength to weight ratio were obtained. Finally, these values were compared between them to determine the effect of cell size on the compressive properties. The results show that increasing the cell size increases the stiffness. For example, increasing the cell size from 1 mm to 1.5 mm at constant density (480 kg/m³) increases the compressive modulus by 17%, while the compressive stress at 50% strain increasesby 14%. From all the results obtained, it can be concluded that among the closed cell rubber foams having the same matrix composition and similar densities,but different cell sizes, the one having the smallest cell size gives the lowest compressive properties to weight ratio, while the one with the largest cell size gives the highest ratio when they are slowly compressed.
32

Développement d'un système de finition polymérisable aux UV super performant

Hermann, Aurélien 14 January 2022 (has links)
Les revêtements de couvre-planchers en bois appliqués en surface afin d'améliorer la durabilité du bois sont soumis à de nombreuses sollicitations au cours de leur durée de vie en service. Parmi les différents types d'agressions (chimiques, mécaniques, environnementales) auxquelles un revêtement doit faire face, les agressions mécaniques sont les plus problématiques. Ces dernières peuvent créer des défauts en surface de la finition (rayures, indentations, usure) pouvant considérablement altérer l'aspect de la finition et réduire la durabilité du couvre-plancher. L'apparition de défauts en surface d'un système de finition peut indiquer une performance mécanique trop faible. L'objectif principal de ce projet est d'améliorer les propriétés mécaniques des revêtements polymérisables par rayonnement UV pour les couvre-planchers en bois à travers l'analyse et la compréhension de leurs comportements physico-chimiques. Deux axes de recherche ont été définis. Le premier traite de l'inhibition causée par l'oxygène, lors de la polymérisation radicalaire, impactant la surface des revêtements, et l'utilisation de nouveaux composés permettant de réduire cette action inhibitrice. Le second axe a pour objectif d'améliorer la résistance mécanique de systèmes de finitions multicouches et de mieux comprendre l'influence des propriétés apportées individuellement par les différentes couches. Dans le premier axe, une étude a été menée afin de caractériser les problématiques liées à l'inhibition de l'oxygène. Des analyses en microspectroscopie Raman ont permis d'étudier l'impact de l'inhibition par l'oxygène selon sa profondeur de diffusion. De nouveaux composés n'ayant jamais été utilisés pour la réduction de l'inhibition par l'oxygène ont été incorporés selon leurs fonctions chimiques et leur effet supposé lors de la polymérisation en présence d'oxygène. Leur capacité à réduire l'inhibition a été comparée à celle d'autres composés déjà décrits dans la littérature, mais utilisés selon d'autres conditions opératoires. En plus de comparer l'efficacité de ces composés lors de la polymérisation des formulations, leur impact sur la résistance mécanique de la finition a été considéré. L'action de l'oxygène étant limitée par sa diffusion au sein de la formulation, l'inhibition est généralement plus importante en surface des revêtements. Des essais d'abrasion de surface et de dureté pendule ont permis de compléter cette étude en comparant l'efficacité des composés. Le deuxième axe vise à approfondir la compréhension du comportement de finitions multicouches, lorsque soumis à des indentations ou des rayures. Dans un premier temps, la relation structure-propriété d'une finition a été analysée par la formulation de couples monomère-oligomère. Les propriétés physico-chimiques, telles que la température de transition vitreuse (Tg) et la densité de réticulation, des polymères seuls ont été déterminées par analyse mécanique dynamique (DMA). Dans un second temps, les formulations ont été appliquées en couche de surface. La dureté, la résistance à l'abrasion, la résistance à la rayure et la résistance à la friction de la couche de surface au sein d'un système de finition appliqué sur le bois ont été étudiées. Les résultats obtenus ont permis une meilleure compréhension du comportement de la couche de surface lors de sollicitations mécaniques. Une meilleure perception des paramètres influençant la performance mécanique de la couche de surface au sein d'un système de finition multicouche industriel a ainsi pu être acquise. Afin d'approfondir la compréhension du comportement d'un système de finition multicouche, l'influence des propriétés de la couche de scellant a, elle aussi, été étudiée. A nouveau, les propriétés physico-mécaniques des formulations réticulées individuellement ont été analysées par DMA. Par la suite, l'influence des propriétés du scellant sur la dureté et la résistance à la rayure d'une finition multicouche a pu être évaluée. Le rôle du scellant étant d'absorber et de diffuser une partie des forces subies par les couches de surface, l'influence de l'épaisseur du scellant a également été étudiée. De plus, l'influence des scellants sur le profil des rayures à la surface des systèmes de finition, a été observée par profilométrie de surface. Une corrélation entre l'épaisseur totale de scellant appliquée et la profondeur moyenne des rayures a pu être établie. L'influence des propriétés des différentes formulations appliquées sur la résistance aux rayures a pu aussi être étudiée. À l'épaisseur maximale appliquée, les produits ayant un réseau plus dense résistent mieux aux rayures en présentant une plus petite profondeur de pénétration. / Coatings for wood flooring, applied on the wood surface to enhance its durability, undergo numerous mechanical stresses during their lifetime. Among the various damages (chemical, mechanical, environmental) that coatings have to resist to, mechanical damages are the most problematic. Mechanical damages can generate failures at the surface of the finish (scratches, indentations, wear) that can significantly affect the finish aspect and reduce the flooring's durability. The formation of surface failures may indicate insufficient mechanical properties. The main objective of this work is to enhance the mechanical properties of UV-curable coatings for wood flooring and to better understand their physicochemical behavior. Two research axes were defined. The first one concerns the oxygen inhibition of the UV-curable acrylate polymerization that affects the coating surface and the use of several new compounds able to reduce oxygen inhibition. The main objective of the second axis was to improve the mechanical performances of multilayered finishing system and to was used to distinguish the impact of inhibition caused by oxygen according to the depth of oxygen diffusion. Products never used to reduce the oxygen inhibition were added to formulations, according to their chemical nature and their supposed effect on oxygen inhibition. Their efficiency was then compared to the efficiency of several compounds, already described in the literature, but under different experimental conditions. In addition to the comparison of the compounds' efficiency during the formulations polymerization, their effect on the mechanical properties of the coating was considered. As the influence of oxygen is limited by its diffusion in the formulation, the inhibition is generally higher at the coatings surface. Abrasion tests and pendulum hardness helped to complete the study and give a broader discernment of the compounds' efficiency. The main purpose of the second axis was to deepen the comprehension of multilayered finish systems behavior when submitted to mechanical loads. First, the structure-property relationship of finishing systems was analyzed by formulating monomer-oligomer couples applied as topcoats. Physico-chemical properties, such as glass transition temperature (Tg) and crosslinking density (CLD), were measured by dynamic mechanical analysis (DMA). Secondly, topcoat hardness, abrasion, scratch and friction resistances were determined. These results enabled a better understanding of the topcoat behavior when exposed to various mechanical loads. A better perception of the parameters influencing the topcoat mechanical. In order to investigate further the finishing system mechanical behavior, the influence of the basecoat properties was evaluated. Once again, the physico-chemical properties of the formulations were analyzed separately by DMA. Then, the influence of the basecoat properties on hardness and scratch resistance of a multilayered finish was determined. As the role of the basecoat is to absorb and diffuse partly the mechanical loads endured by surface layers, the impact of basecoat thickness was also investigated. Moreover, the effect of the basecoats on the scratch profile was examined by surface profilometry. A correlation between the basecoat thickness and the mean depth of scratches was obtained. The influence of the various formulation properties on the scratch resistance was also demonstrated. At the maximal thickness applied, basecoat having a denser polymeric network withstand better scratches as they showed a lower mean scratch depth.
33

Caractérisations structurale et mécanique du massif rocheux de la fosse Tiriganiaq du projet Meliadine à l'aide de la modélisation synthétique du massif rocheux

Kapinga Kalala, Iris 20 April 2018 (has links)
Ce mémoire porte sur l’application de la modélisation du massif rocheux synthétique (SRM) à la caractérisation du massif rocheux fracturé de la fosse Tiriganiaq du projet minier Meliadine. Les conditions structurales in-situ ont été représentées à l’aide de la modélisation des systèmes de fractures (FSM). Les résultats ont permis de définir un volume élémentaire représentatif (REV) du massif rocheux égal à 7,5 m x 15 m x 7,5 m. L’approche a également permis de quantifier l’impact de la variation des propriétés géométriques du FSM sur le comportement mécanique du massif. Les analyses paramétriques des propriétés géométriques du SRM font ressortir que le comportement du massif rocheux est particulièrement sensible à une variation de l’intensité des fractures (P32), de l’aire des fractures et du pendage de la foliation. De plus, la résistance en compression uniaxiale est fortement anisotrope.
34

Improving Tribological and Mechanical Properties of Copper-Based Friction Materials for Brake Pad Applications

Valiei, Mohammad 03 February 2021 (has links)
Les matériaux de friction les plus populaires pour les applications de plaquettes de frein d’éolienne sont les composites à matrice métallique à base de cuivre fabriqués par la méthode de métallurgie des poudres. D'une part, le cuivre a une bonne conductivité thermique et disperse adéquatement la chaleur générée lors du freinage. D'autre part, la métallurgie des poudres permet une addition facile de diverses poudres avec une distribution uniforme, tout en limitant la ségrégation et les réactions indésirables. Ces matériaux incorporent des renforts (additifs) dans diverses fractions volumiques pour contrôler le coefficient de frottement, la résistance à l'usure ainsi que les propriétés mécaniques. La simple sélection de renforts selon diverses proportions n’est pas suffisante pour obtenir les propriétés mécaniques et tribologiques souhaitées. les propriétés suivants des additifs ont des effets significatifs sur les caractéristiques mécaniques et tribologiques de ces matériaux: leur 1) dureté, 2) résistance, 3) réactivité de surface, 4) taille, 5) forme, 6) ténacité et la conductivité thermique ainsi que 7) leurs liaisons à la matrice et les propriétés de leur interface avec la matrice. Ce projet porte une attention particulière à la modification des liaisons entre les additifs et la matrice et au choix des additifs de bons taille, forme et type. Ce travail de recherche met en évidence le développement d'une large gamme de nouveaux matériaux de friction pour les plaquettes de frein qui peuvent être adaptés à différentes applications en fonction des propriétés tribologiques et mécaniques requises. La comparaison avec le matériau commercial existant est présentée en termes de coefficient de frottement (COF), de taux d'usure et de propriétés mécaniques. Les nouvelles formulations permettent de réduire le taux d'usure moyen d’environ 6 fois et d'augmenter le COF de 55% allant de 0,28 à 0,43. La charge de cisaillement maximale et la dureté Brinell peuvent augmenter respectivement jusqu’à 3,5 fois et 47%. / The most popular friction materials for brake pad applications are copper-based metal matrix composites fabricated with the powder metallurgy process. On the one hand, copper has good thermal conductivity and disperses heat generated during braking. On the other hand, powder metallurgy (PM) allows easy addition of various powder additives with even distribution and limits segregation and undesirable reactions. These materials incorporate reinforcements (additives) in various volume fractions in order to control the coefficient of friction, wear resistance, and mechanical properties. To achieve the desired mechanical and tribological properties, selection of additives with their respective proportion is not sufficient. Hardness, strength, surface reactivity, size, shape, toughness, and thermal conductivity of the additives, as well as their adhesion strength to the matrix and the properties of their interface with the matrix have significant effects on the mechanical and tribological characteristics of the friction materials. Particular focus is made on modifying the bonds between the additives and the matrix and choosing the additives with the right size, shape, and chemistry. This research highlights the development of a wide range of novel PM brake pad lining materials, which can be tailored to different applications depending on the required tribological and mechanical properties. A comparison with existing commercial material is presented in terms of the coefficient of friction, wear rate, and mechanical properties. The new formulations allow reduction of the average wear rate by 6 times and increase the COF by 55 % ranging from 0.28 to 0.43. In addition, the maximum shear load and Brinell apparent hardness can increase by 3.5 times and 47 %, respectively.
35

Contributions à l'amélioration des propriétés mécaniques de pièces fabriquées par métallurgie des poudres ayant subi une opération d'usinage à cru

Robert-Perron, Etienne 12 April 2018 (has links)
Traditionnellement, le procédé de mise en forme par métallurgie des poudres permettait la fabrication de pièces relativement complexes ne nécessitant peu ou pas d'opérations secondaires d'usinage. Toutefois, avec la diversité actuelle de ce procédé, au moins 30% de ces pièces requièrent une ou plusieurs opérations d'usinage afin d'atteindre les exigences géométriques demandées en service. L'usinage de ces pièces, particulièrement celles fabriquées à partir d'acier autotrempant, est cependant limité étant donné les complications qui en découlent. L'usinage de pièces à cru fabriquées par métallurgie des poudres est une alternative intéressante afin de diminuer les coûts de production et d'ainsi concurrencer les autres procédés de mise en forme. Depuis les années 90, des procédés de fabrication ont été développés dans le but d'augmenter la résistance des pièces à cru et de rendre l'usinage de ces dernières envisageable. Toutefois, avant d'utiliser industriellement ce type d'usinage, certaines considérations doivent être étudiées. Cette thèse vise à caractériser et à optimiser l'usinabilité, selon diverses opérations d'usinage, de pièces de haute résistance à cru fabriquées par métallurgie des poudres. La durée de vie d'outils de coupe, de même que les effets de l'usure de ces derniers sur l'usinabilité des pièces à cru, ont également été caractérisés. Les propriétés mécaniques de pièces usinées à cru ont été mesurées suite à l'opération de frittage et comparées à celles de pièces usinées conventionnellement, c'est-à-dire après le frittage. Par ailleurs, des copeaux recueillis lors de l'usinage de pièces à cru ont été ajoutés un mélange de poudres de composition similaire pour la fabrication de nouvelles pièces. Les résultats ont montré qu'une vitesse de rotation suriacique élevée et une vitesse d'avance faible améliorent l'usinabilité des pièces à cru. Par exemple, en perçage, la taille de la zone où des particules ont été arrachées est de 115 um pour une vitesse de rotation surfacique de 140 m/min (7000 tour/min) et pour une vitesse d'avance de 0,0254 mm/r. Cette taille d'arrachement, mesurée lors des essais de perçage, est environ la moitié de celles répertoriées dans la littérature. La durée de vie des outils de coupe en usinage à cru est largement supérieure à celle mesurée lors de l'usinage de pièces frittées. Toutefois, lorsque la pointe de l'outil se détériore, la qualité des pièces usinées diminue. Par exemple, pour une opération de dressage, la taille moyenne de la zone d'arrachement est de 150 um lorsqu'un outil neuf est utilisé alors que cette taille augmente à 300 um pour une usure d'outil de 0,20 mm. Les essais mécaniques effectués sur des pièces frittées ayant subies une opération d'usinage à cru ont montré que les propriétés mécaniques de ces pièces sont similaires à celles mesurées sur des pièces usinées conventionnellement. De plus, les résultats montrent que 20%-poids de copeaux obtenus lors de l'usinage de pièces à cru peut être mélangé à un mélange de poudres de même composition sans en affecter les propriétés de mise en œuvre et les propriétés après frittage. / Traditionally, the powder metallurgy process allowed manufacturing components with relatively complex geometries requiring little machining operations. However, with the current diversity of this process, approximately 30% of these components require one or more machining operations to reach geometrical conformances. Unfortunately, the machining of powder metallurgy components, particularly those made from sinter-hardenable steel powders, is limited due to poor machinability of the latter. The machining of green powder metallurgy components is an attractive process to reduce production costs and to compete with other shaping processes. During the last decade, different strategies were developed to increase the strength of green powder metallurgy component enabling the machining of the latter. However, before using this type of machining in an industrial environment, certain considerations must be studied and optimized. This thesis is aimed at characterizing and optimizing the machinability of high green strength powder metallurgy components for various machining operations. The cutting tool life, as well as the effects of the tool wear on the machinability of green components, are also characterized. Powder metallurgy components machined in their green state were sintered and then subjected to mechanical tests to compare their sintered strength to that of components machined conventionally, i.e. after sintering. The results showed that a high surface speed and a low feed rate improve the machinability of green powder metallurgy components. For example, in drilling, the average width of breakouts is 115 um when a surface speed of 140 m/min (7000 rpm) and a feed rate of 0,0254 mm/r are used. Such width of breakouts, measured during the drilling tests, is approximately one half of those presented in the literature. The tool life of the cutting tool in green machining is largely higher than that measured during the machining of sintered components. However, for a worn cutting tool, the quality of the machined components decreases. In facing, the average width of breakouts is 150 um for a brand new cutting tool while this width of breakouts increases to 300 um for a worn one (tool wear: 0,20 mm). Mechanical tests done on sintered parts having undergone an operation of green machining showed that the mechanical properties of these parts are similar to those measured on components machined conventionally. Results showed that 20 wt.% of chips reclaimed during the machining of green specimens can be admixed to a similar premix without affecting of the compaction and the sintered properties.
36

Discrete element method modeling of mechanical behavior of coke aggregates during compaction process

Sadeghi Chahardeh, Alireza 21 February 2022 (has links)
Les anodes en carbone font partie de la réaction chimique de réduction de l'alumine, qui est consommée lors du procédé d'électrolyse Hall-Héroult. Le comportement des agrégats secs de coke en tant que composant principal des anodes de carbone (environ 85 %) a un rôle clé et exceptionnel dans leurs propriétés finales. L'analyse de défaillance des agrégats de coke sec permet non seulement de mieux comprendre les mécanismes de déformation des matériaux granulaires sous charge compressive, mais peut également identifier les causes potentielles de défauts structurels des anodes en carbone, telles que les fissures horizontales. Dans ce travail, il sera montré qu'un mode de défaillance particulier peut être responsable de la génération de fissures dans les anodes en carbone. Le comportement de rupture des agrégats de coke n 'est pas seulement affecté par les paramètres du processus de compactage, tels que la pression de confinement et la vitesse de déformation axiale, mais il dépend également fortement de la distribution granulométrique et de la forme des particules de coke. La méthode des éléments discrets (DEM) est utilisée pour modéliser le comportement micromécanique des agrégats de coke sec pendant le processus de compactage. De plus, le critère de travail de second ordre est utilisé pour analyser la rupture des éprouvettes de granulats de coke. Les résultats révèlent que l'augmentation de la pression de confinement augmente la probabilité du mode de diffusion de la rupture dans l'éprouvette. D'autre part, l'augmentation de la vitesse de déformation augmente les chances du mode de localisation de la déformation de la rupture dans l'éprouvette. De plus, les résultats indiquent que l'utilisation de fines particules ainsi que la diminution de la sphéricité des particules de coke augmenteront la plage de stabilité des agrégats de coke. De plus, en utilisant l'analyse des évaluations de contour de micro-déformation pendant le processus de compactage, il est montré que, à la fois en ajoutant des particules fines aux agrégats de coke et en diminuant la sphéricité des particules de coke, la possibilité de créer une bande de compression dans le coke agrégats est réduit. Étant donné que la présence des bandes de compactage dans la pâte d'anode crée une zone sujette à la génération de fissures horizontales, les résultats de cette étude pourraient conduire à la production d'anodes en carbone avec moins de défauts structurels. / Carbon anodes are part of the chemical reaction of alumina reduction, that is consumed during the Hall-Héroult electrolysis process. The behavior of dry coke aggregates as the main component of carbon anodes (about 85 %) has an exceptional key role in their final properties. The failure analysis of dry coke aggregates not only leads to a better understanding of the deformation mechanisms of granular materials under compressive loading but also can also identify the potential causes of structural defects in carbon anodes, such as horizontal cracks. In this work, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The failure behavior of the coke aggregates is not only affected by the compaction process parameters, such as the confining pressure and axial strain rate, but it is also strongly dependent on the size distribution and shape of coke particles. The discrete element method (DEM) is employed to model the micro-mechanical behavior of the dry coke aggregates during the compaction process. In addition, the second-order work criterion is used to analyze the failure of the coke aggregate specimens. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of the strain rate augments the chance of the strain localization mode of the failure in the specimen. In addition, the results indicate the fact that the use of fine particles as well as decreasing the sphericity of coke particles will increase the stability range of the coke aggregates. Moreover, by using the analysis of micro-strain contour evaluations during the compaction process, it is shown that, both by adding fine particles to the coke aggregates and by decreasing the sphericity of coke particles, the possibility of creating a compression band in the coke aggregates is reduced. Since the presence of the compaction bands in the anode paste creates an area that is prone to horizontal crack generation, the results of this study could lead to the production of carbon anode with fewer structural defects.
37

Natural rubber nanocomposites reinforced with nanostructured carbon-based materials : investigation of their mechanical and thermal properties

Shahamati Fard, Farnaz 26 July 2022 (has links)
Le développement de nanocomposites thermoconducteurs à base de caoutchouc est une tâche difficile pour diverses technologies modernes, allant des appareils électroniques à l'industrie du pneu. La présente étude est concentrée sur les propriétés thermiques et mécaniques de composites de caoutchouc naturel chargés avec des additifs à base de carbone, notamment du noir de carbone, des nanotubes de carbone, de l'oxyde de graphène réduit et des nanoplaquettes de graphène. En raison de la faible conductivité thermique du caoutchouc, des concentrations élevées de divers additifs thermoconducteurs sont nécessaires. Cependant, cela a un impact significatif sur le comportement mécanique des matériaux finaux, ce qui limite leur application. Dans ce scénario difficile, nous avons cherché à améliorer la conductivité thermique et les propriétés mécaniques (y compris les propriétés en traction, la dureté, les propriétés dynamiques, etc.) de nanocomposites à base de caoutchouc en exploitant des systèmes de charges hybrides à base de carbone. Nous avons aussi modifié la surface de ces charges pour améliorer leur interaction avec la matrice en caoutchouc dans le but de créer un réseau continu de charges à travers la matrice. La première partie de la thèse (chapitre 2) décrit l'effet de l'ajout de l'oxyde de graphène réduit (RGO) sur la conductivité thermique et les propriétés mécaniques de caoutchouc. Le RGO a d'abord été synthétisé en utilisant la méthode Hummer améliorée. Ensuite, il a été pré-dispersé dans du latex naturel en utilisant la technique de co-coagulation puis mélangé à la formulation de référence à différentes teneurs (0-2 parties pour cent en caoutchouc (phr))à l'aide d'un mélangeur interne. Pour une concentration de RGO de 2 phr, les résultats ont montré que la densité de réticulation des nanocomposites caoutchouc/RGO développés avait augmenté de 65% par rapport à la formulation de base. Une augmentation significative de la résistance à la traction (53%) et du module de Young (31%) a été observée pour la même concentration en RGO. Enfin, il a été observé que l'ajout de seulement 0.5 phr de RGO avait entraîné une amélioration considérable (26%) de la conductivité thermique. Dans la deuxième partie de la thèse (chapitre 3), l'effet d'un système de charges hybride (noir de carbone/nanotubes de carbone multi-parois, MWCNT) sur les propriétés mécaniques et la conductivité thermique des nanocomposites développés a été étudié. En raison de la différence de forme entre le noir de carbone et les MWCNT, ainsi que de l'adsorption des agents de réticulation à la surface des MWCNT, il a été observé que le temps de cuisson (vulcanisation) (t₁₀) et celui de cuisson optimal (t₉₀) de la matrice en caoutchouc augmentaient progressivement avec l'augmentation de la teneur en MWCNT. Enfin, en remplaçant 5 phr de noir de carbone par la même concentration en MWCNT, des améliorations significatives de la conductivité thermique et des propriétés mécaniques ont été obtenues grâce aux propriétés intrinsèques des MWCNT et à leur synergie avec le noir de carbone. En outre, les modules à 100% et 300% de déformation (M@100 et M@300) des nanocomposites développés ont respectivement augmenté de 72% et 54%. Dans la troisième partie de la thèse (chapitre 4), la modification de surface des MWCNT a été réalisée pour améliorer le comportement mécanique dynamique des nanocomposites correspondants et trouver un ratio optimal de charges menant à des propriétés mécaniques et thermiques améliorées. Les résultats ont montré l'effet positif de l'oxydation de la surface des MWCNT sur la dispersion des charges et les propriétés thermiques et mécaniques des nanocomposites. La dernière partie de la thèse (chapitre 5) a été consacrée à l'étude de l'effet synergique des systèmes hybrides de charges (noir de carbone/nanoplaquettes de graphène, GNPs) dans lequel les GNPs (GNP-M25, GNP-C300 et GNP-C750) présentaient différentes surfaces spécifiques et différents rapports d'aspect. Les résultats ont montré que la surface spécifique de la charge et son rapport d'aspect jouent un rôle vital dans la production d'un réseau de charges conducteur. L'incorporation du GNP-M25 ayant une dimension latérale la plus élevée parmi les trois GNPs étudiés permettait de développer un nanocomposite ayant une conductivité thermique plus élevée. D'autre part, à une concentration élevée (5 phr), la synergie entre GNPs-M25 et le noir de carbone était élevée, entraînant une meilleure dispersion des charges et une plus faible dissipation d'énergie. / Creating effective thermally conductive rubber nanocomposites for heat management is a challenging task for various modern technologies, from electronic devices to the tire industry. This study focused on the thermal and mechanical properties of natural rubber nanocomposites filled with carbon-based fillers, including carbon black, carbon nanotubes, reduced graphene oxide (RGO), and graphene nanoplatelets. Due to the poor thermal conductivity of rubber materials, high loadings of various thermally conductive fillers are required. However, this significantly impacts the final materials' mechanical behavior, limiting their application. In this challenging scenario, we aimed to enhance the thermal conductivity and mechanical properties (including tensile properties, hardness, dynamic mechanical properties, etc.) of rubber-based nanocomposites by exploiting hybrid carbon-based filler systems and suitable filler surface modification to improve the formation of continuous filler's network through the natural rubber (NR) matrix. The first part of the thesis (chapter 2) describes the effect of adding RGO to the natural rubber's thermal conductivity and mechanical properties. RGO was first synthesized using an improved Hummer method. Then, RGO pre-dispersed in natural rubber latex using the co-coagulation technique was added to a reference formulation in various contents (0-2 parts per hundred rubber (phr)), and compounded using an internal mixer. It was observed that the crosslink density of the developed natural rubber/RGO nanocomposites increased by 65% for RGO concentration of 2 phr. A significant increase in tensile strength (53%) and Young's modulus (31%) was observed for the same RGO concentration. Ultimately, the addition of only 0.5 phr of RGO resulted in a considerable improvement (26%) in thermal conductivity. In the second part of the thesis (chapter 3), the effect of the carbon black/multiwall carbon nanotubes (MWCNT) hybrid filler system on the mechanical properties and thermal conductivity of the nanocomposites was studied. Because of the shape difference between carbon black and MWCNT and the adsorption of curing agents onto the MWCNT, the scorch time (t₁₀) and optimum curing time (t₉₀) gradually increased with increasing MWCNT content. Finally, by substituting 5 phr of carbon black with MWCNT, significant improvements in thermal conductivity and mechanical properties were achieved due to the intrinsic properties of MWCNT and its synergy with carbon black. Moreover, the modulus at 100% and 300% strain (M@100 and M@300) increased by 72% and 54%, respectively. In the third part of the thesis (chapter 4), the surface modification of MWCNT was carried out to improve the dynamic mechanical behavior of the natural rubber/MWCNT nanocomposites to find an optimum fillers ratio having suitable mechanical and thermal properties. The results showed the positive effect of MWCNT surface oxidation on the fillers' dispersion and nanocomposites' properties. The last part (chapter 5) focused on the synergistic effect between carbon black and GNPs hybrid fillers with different surface areas and aspect ratios (GNPs-M25, GNPs-C300, and GNPs-C750). The results showed that the specific surface area of filler and its aspect ratio play a vital role in producing a conductive filler network. GNPs-M25 with a higher lateral dimension led to the highest consistency and denser conductive network inside the NR nanocomposite compared to GNPs-C300 and GNPs-C750. On the other hand, higher substitution increased the synergy of hybrid fillers, resulting in better filler dispersion and less energy dissipation.
38

Propriétés mécaniques des nanocomposites à base de polypropylène

Boubekri, Khalid 11 April 2018 (has links)
Combiner les avantages des nanoparticules d'argile et celles d'une phase élastomère dispersée peut conduire à de meilleures propriétés mécaniques. L'amélioration à la fois des propriétés mécaniques en traction (module, contrainte et déformation à la rupture) et des propriétés au choc (résistance et énergie de rupture) peut conduire à de nouvelles applications industrielles. Cependant, le renforcement d'une matrice polymère ductile par des charges minérales classiques se traduit de manière quasi-systématique par une fragilisation importante de celle-ci. Les nanocomposites utilisant comme renforts des microplaquettes d'argile permettent une approche originale de ce problème de la fragilité du fait de la taille des renforts, de leur dispersion, de leur surface spécifique élevée et des possibilités de fonctionnalisation des surfaces. Les nanocomposites à matrice polypropylène renforcés par un type de nanoparticules d'argile sont mis en œuvre à l'état fondu dans un mélangeur interne. L'ajout d'oligomères fonctionnalisés favorise la dispersion de l'argile dans le polypropylène. Une exfoliation partielle est ainsi obtenue par cisaillement intense d'un milieu hautement visqueux. Grâce à leur facteur de forme (longueur sur épaisseur) très élevé (>100), des fractions volumiques de particules inorganiques aussi basses que 2-3% suffisent pour engendrer un réseau de particules percolant conférant au nanocomposite final des propriétés mécaniques comparables aux composites classiques chargés par 30 à 50% de fibres de verres, sans altérer grandement la densité et la transparence de la matrice. Par ailleurs, même si on augmente le module et éventuellement la contrainte à la rupture, les propriétés au choc et la déformation à la rupture se trouvent diminuées. En revanche, dans le domaine des polymères, l'ajout d'une phase élastomère améliore les propriétés au choc et augmente la déformation à la rupture. Cette amélioration se fait au détriment du module qui diminue en fonction de la teneur en phase élastomère. La dispersion est analysée par diffraction des rayons X et microscopie. Les matériaux sont soumis à des essais mécaniques en traction et au choc.
39

NorSand-aUL : une loi de comportement améliorée pour la modélisation des sables sous sollicitations statiques et cycliques

Castonguay, Vincent 24 March 2021 (has links)
Cette thèse de doctorat porte sur la modélisation numérique du comportement des sables à l'aide de la loi de comportement NorSand-aUL. Cette loi, développée dans le cadre de ce projet de recherche, est une évolution du modèle NorSand spécifiquement adaptée à la modélisation du comportement des sables soumis à des sollicitations cycliques. La révision des performances de NorSand sous différents types de sollicitations (triaxial compression, cisaillement simple statique et cyclique, cisaillement à direction et ratio des contraintes principales contrôlés) a permis l'identification de certains points faibles du modèle, rendant ses modélisations du comportement des sables sous sollicitations cycliques insatisfaisantes. Afin de corriger ces lacunes, deux groupes de modifications ont été proposés. D'abord, la théorie de l'état critique anisotrope a été implémentée dans NorSand, afin d'y créer une dépendance vis-à-vis du type et de la direction des chargements. Cette modification a grandement amélioré les performances du modèle pour la modélisation du comportement encisaillement simple statique. La deuxième modification proposée s'est articulée autour de la formulation d'une nouvelle mécanique de génération de la plasticité lors du déchargement des sables. L'existence d'une deuxième surface de plasticité, nichée à l'intérieur de la surface de plasticité originale de NorSand, a été postulée. Les capacités de modélisation d'une version de NorSand incorporant cette nouvelle mécanique ont été confirmées grâce à la modélisation d'essais triaxiaux drainés et non drainés comprenant des phases de déchargement. Les deux modifications proposées au modèle NorSand au cours de ce projet de recherche ont finalement été agrégées pour mener à la formulation de NorSand-aUL. Ce nouveau modèle a été utilisé pour la modélisation d'essais de cisaillement simple cyclique effectués sur deux sables. Ces modélisations ont démontré les gains réalisés, particulièrement pour les essais effectués sur sable lâche, par rapport aux performances antérieurement obtenues à l'aide de la version originale de NorSand. Des axes de recherche future ont été proposés afin d'améliorer les performances de NorSand-aUL, notamment pour la modélisation du comportement des sables denses soumis à des sollicitations cycliques. / This PhD thesis deals with the numerical modelling of sand behaviour using the NorSandaUL constitutive law. This law, developed as part of this research project, is an evolution ofthe NorSand model specifically adapted to the modelling of sand behaviour under cyclicloading. The review of NorSand's performance under various types of loading (triaxial compression, static and cyclic simple shear, fixed principal stress direction and fixed principal stress ratio) has allowed the identification of certain weak points in the model, making its behaviour modellings under cyclic loading unsatisfactory. In order to address these short comings, two groups of modifications were proposed. First, the anisotropic criticalstate theory was implemented in NorSand, in order to create a dependency on the type and direction of loading. This modification greatly improved the performance of the model for predicting static simple shear behavior. The second proposed modification focused on the formulation of a new mechanics for the generation of plasticity during unloading. The existence of a second yield surface, nested within the original NorSand yield surface, was postulated. The modelling capabilities of a version of NorSand incorporating this new mechanics were confirmed by satisfactory modelling results of drained and undrained triaxialtests which included unloading phases. The two modifications to NorSand proposed over the course this research project were eventually aggregated to lead to the formulation of NorSand-aUL. This new model was used to model cyclic simple shear tests for two sands. These modelling results demonstrated the gains made, particularly for tests conducted on loose sands, compared to the performance previously obtained using the original version of NorSand. Areas for future research were proposed to improve the performance of NorSandaUL, particularly in modelling the behaviour of dense sands under cyclic loading.
40

Nanoindentation relaxation study and micromechanics of Cement-Based Materials

Venkovic, Nicolas 24 April 2018 (has links)
Ce travail évalue le comportement mécanique des matériaux cimentaires à différentes échelles de distance. Premièrement, les propriétés mécaniques du béton produit avec un bioplastifiant à base de microorganismes efficaces (EM) sont etudiées par nanoindentation statistique, et comparées aux propriétés mécaniques du béton produit avec un superplastifiant ordinaire (SP). Il est trouvé que l’ajout de bioplastifiant à base de produit EM améliore la résistance des C–S–H en augmentant la cohésion et la friction des nanograins solides. L’analyse statistique des résultats d’indentation suggère que le bioplastifiant à base de produit EM inhibe la précipitation des C–S–H avec une plus grande fraction volumique solide. Deuxièmement, un modèle multi-échelles à base micromécanique est dérivé pour le comportement poroélastique de la pâte de ciment au jeune age. L’approche proposée permet d’obtenir les propriétés poroélastiques requises pour la modélisation du comportoment mécanique partiellement saturé des pâtes de ciment viellissantes. Il est montré que ce modèle prédit le seuil de percolation et le module de Young non drainé de façon conforme aux données expérimentales. Un metamodèle stochastique est construit sur la base du chaos polynomial pour propager l’incertitude des paramètres du modèle à travers plusieurs échelles de distance. Une analyse de sensibilité est conduite par post-traitement du metamodèle pour des pâtes de ciment avec ratios d’eau sur ciment entre 0.35 et 0.70. Il est trouvé que l’incertitude sous-jacente des propriétés poroélastiques équivalentes est principalement due à l’énergie d’activation des aluminates de calcium au jeune age et, plus tard, au module élastique des silicates de calcium hydratés de basse densité. / This work assesses the mechanical behavior of cement-based materials through different length scales. First, the mechanical properties of concrete produced with effective microorganisms (EM)-based bioplasticizer are investigated by means of statistical nanoindentation, and compared to the nanomechanical properties of concrete produced with ordinary superplasticizer (SP). It is found that the addition of EM-based bioplasticizer improves the strength of C–S–H by enhancing the cohesion and friction of solid nanograins. The statistical analysis of indentation results also suggests that EM-based bioplasticizer inhibits the precipitation of C–S–H of higher density. Second, a multiscale micromechanics-based model is derived for the poroelastic behavior of cement paste at early age. The proposed approach provides poroelastic properties required to model the behavior of partially saturated aging cement pastes. It is shown that the model predicts the percolation threshold and undrained elastic modulus in good agreement with experimental data. A stochastic metamodel is constructed using polynomial chaos expansions to propagate the uncertainty of the model parameters through different length scales. A sensitivity analysis is conducted by post-treatment of the meta-model for water-to-cement ratios between 0.35 and 0.70. It is found that the underlying uncertainty of the effective poroelastic proporties is mostly due to the apparent activation energy of calcium aluminate at early age and, later on, to the elastic modulus of low density calcium-silicate-hydrate.

Page generated in 0.0919 seconds