Spelling suggestions: "subject:"propriétés pseudolocales"" "subject:"propriétés pseudolocal""
1 |
Analyse hautes fréquences pour les équations des ondes de surface / High frequency analysis for water waves systemsNguyen, Quang Huy 05 July 2016 (has links)
Cette thèse est consacrée à l'analyse mathématique de l'équation d'Euler incompressible à surface libre. On se concentre sur la propriété dispersive et sur la théorie de Cauchy à faible régularité. Une grande part de la thèse est consacrée à l'étude de l'équation des ondes de gravité-capillarité. On établit des critères d'explosion et la persistance de régularité dans les espaces de Sobolev. En démontrant les estimations de Strichartz pour les solutions à faible régularité, on obtient des théories de Cauchy pour les données initiales dont la vitesse peut être non-lipschitzienne. Dans une autre part de la thèse, on étudie la propriété dispersive des équations des ondes de surface. Plus précisément, on s'intéresse aux estimations de Strichartz. On démontre que, pour les solutions raisonnablement régulières, les équations des ondes de surface non linéaires obéissent aux mêmes estimations de Strichartz comme dans le cas des équations linéarisées. / This dissertation is devoted to the mathematical analysis of the water waves systems. We focus on the dispersive property and the Cauchy problem for rough initial data. One of the main objects of study is the gravity-capillary water waves system. We establish blow-up criteria and the persistence of Sobolev regularity. By proving Strichartz estimates for rough solutions, we obtain Cauchy theories for non-Lipschitz initial velocity. In another part of the dissertation, we study the dispersive property of the fully nonlinear water waves systems. More specifically, we are interested in Strichartz estimates. We prove for sufficiently smooth solutions that the nonlinear systems obey the same Strichartz estimates as their linearizations do.
|
Page generated in 0.0684 seconds