• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • Tagged with
  • 102
  • 102
  • 45
  • 37
  • 36
  • 36
  • 33
  • 20
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Dual High-Voltage Power Supply for Use on Board a CubeSat

Weiser, Nicholas 01 June 2014 (has links) (PDF)
Since their conception in 1999, CubeSats have come and gone a long way. The first few that went into space were more of a “proof of concept,” and were more focused on sending simple data and photographs back to Earth. Since then, vast improvements have been made by over 40 universities and private firms, and now CubeSats are beginning to look towards interplanetary travel. These small satellites could provide a cost effective means of exploring the galaxy, using off the shelf components and piggy-backing on other launch vehicles with more expensive payloads. However, CubeSats are traditionally launched into Low Earth Orbit (LEO), and if an interplanetary satellite is to go anywhere from there, it will need a propulsion system. This thesis project’s main goal will be to investigate the possibility and capability of an Ion-Spray propulsion system. Several problems are to be tackled in this project: how to take a 9 V supply and boost it to a maximum potential difference of 5,000 V, all while minimizing the noise and testing the feasibility of such a system being flown on board a CubeSat.
62

Axisymmetric Air Augmented Methanol/Gox Rocket Mixing Duct Experimental Thrust Study

Johnson, Kyle Jacob 01 March 2013 (has links) (PDF)
A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and propellant mass flow rates and chamber conditions were calculated using an iterative solver dependant on recorded propellant line stagnation pressures. Primary rocket flow produced thrust ranging from 14 to 17.9lbf. Primary mass flow rate through testing ranged from 0.071 to 0.085lbm/s with calculated chamber pressures between 298-362psia. Calculated primary flow velocity ranged from 6,600ft/s to 8,000ft/s depending on propellant pressure inputs and calculated chamber conditions. The AAR test apparatus was capable of testing various mixing duct geometries and measuring the axial thrust of the mixing ducts separately from the total thrust of the system. Two mixing duct geometries, a straight wall mixing duct and diverging wall mixing duct, with identical exterior dimensions and inlet geometry were tested for a range of air/fuel mixture ratios from 0.82 to 2.2 spanning the stoichometric mixture ratio of 1.5. Mixing duct thrust did not vary greatly with primary flow characteristics. Straight mixing duct thrust averaged 0.97lbf and diverging mixing duct thrust averaged 0.18lbf. Total system thrust decreased by an average of 0.62lbf with a straight mixing duct and 0.74lbf with a diverging mixing duct. Decreases in total thrust are attributed to low pressure flow interaction between the mixing duct and the primary rocket assembly. Visual flow comparison between mixing duct configurations and fuel ratio cases were carried out using high definition video recording with a grid reference for comparison. The diverging mixing duct produced the greatest variation in visible flow when compared to a straight mixing duct and no mixing duct configuration. This indicated that the diverging mixing duct had a greater influence on primary and secondary flow field mixing than the straight mixing duct.
63

CFD As Applied to the Design of Short Takeoff and Landing Vehicles Using Circulation Control

Ball, Tyler M 01 June 2008 (has links) (PDF)
The ability to predict the distance required for an aircraft to takeoff is an essential component of aircraft design. It involves aspects related to each of the major aircraft systems: aerodynamics, propulsion, configuration, structures, and stability and control. For an aircraft designed for short takeoffs and landings (STOL), designing the aircraft to provide a short takeoff distance, or more precisely the balanced field length (BFL), often leads to the use of a powered lift technique such as circulation control (CC). Although CC has been around for many years, it has never been used on a production aircraft. This is in part due to the lack of knowledge as to how well CC can actually perform as a high lift device. This research provides a solution to this problem. By utilizing high fidelity computational fluid dynamics (CFD) aerodynamic data, a four-dimensional design space which was populated and modeled using a Monte Carlo approach, and a Gaussian Processes regression technique, an effective aerodynamic model for CC was produced which was then used in a BFL simulation. Three separate models were created of increasing quality which were then used in the BFL performance calculations. A comprehensive gridding methodology was provided as well as computational and grid dependence error analysis. Specific consideration was given to the effect of resolving the turbulent boundary layer in both the gridding and solving processes. Finally, additional turbulence model validation work was performed, both to match previously performed experimental data and to provide a comparison of different models’ abilities to predict separation.
64

Experimental Investigation of a 2-D Air Augmented Rocket: Effects of Nozzle Lip Thickness on Rocket Mixing and Entrainment

Montre, Trevor Allen 01 December 2011 (has links) (PDF)
Cold-flow tests were performed using a simulated Air Augmented Rocket (AAR) operating as a mixer-ejector in order to investigate the effects of varied primary nozzle lip thickness on mixing and entrainment. The simulated primary rocket ejector was supplied with nitrogen at a maximum chamber stagnation pressure of 1712 psi, and maximum flow rate of 1.67 lbm/s. Secondary air was entrained from a plenum, producing pressures as low as 6.8 psi and yielding maximum stagnation pressure ratios as high as 160. The primary ejector nozzles each had an area ratio of approximately 20, yielding average primary exit Mach numbers between 4.34 and 4.57. The primary flow was ejected into an 18.75 inch-long mixing duct with a rectangular cross-sectional area of 2.10 in2. The secondary flow was entrained into the mixing duct through a total cross section of 0.94 in2. Two mixing duct configurations were used, one with plexiglass upper and lower surfaces for flow visualization and one with pressure ports along the lower surface for primary plume measurements. Shadowgraph images were used to characterize the mixing duct flow field, while pressure and temperature instrumentation allowed for calculation of various ejector performance characteristics. Experimentally-calculated performance characteristics were compared to inviscid theoretical predictions. Varying degrees of flow field asymmetry were observed with each nozzle. Test repeatability was found to be excellent for all nozzles. Several distinct phenomena were observed in both the primary plume and secondary streams. The duration of secondary flow choking was found to be inversely proportional to nozzle lip thickness, due to the primary plume being physically closer to the secondary flow with a thinner nozzle lip. This indicated that the ejector’s ability to choke the secondary flow is primarily an inviscid phenomenon. Secondary flow blockage was demonstrated in two consecutive tests using the thickest nozzle lip. Only the left secondary duct became blocked in each case. Blockage was only demonstrated in the centerline pressure configuration, so no visual evidence was able to support the blocked flow theory. At every pressure ratio, entrainment ratio was shown to increase with nozzle lip thickness. The original conical nozzle produced the largest level of entrainment, indicating that the angle of primary flow impingement was the largest contributing factor to secondary entrainment. The increase in efficiency resulting from a bell-mouth nozzle was less than the increase in entrainment efficiency of a conical nozzle, indicating that the conical design was more efficient overall for air augmented rocket applications.
65

Analysis of an Inflatable Gossamer Device to Efficiently De-orbit CubeSats

Hawkins, Robert A, Jr. 01 December 2013 (has links) (PDF)
There is an increased need for spacecraft to quickly and efficiently de-orbit themselves as the amount of debris in orbit around Earth grows. Defunct spacecraft pose a significant threat to the LEO environment due to their risk of fragmentation. If these spacecraft are de-orbited at the end of their useful life their risk to future spacecraft is greatly lessened. A proposed method of efficiently de-orbiting spacecraft is to use an inflatable thin-film envelope to increase the body's area to mass ratio and thusly shortening its orbital lifetime. The system and analysis presented in this project is sized for use on a CubeSat as they are an effective utility as a technology demonstration platform. Analysis has been performed to characterize the orbital dynamics of high area to mass ratio spacecraft as well as the leak rate of such an inflatable device in a vacuum environment. Results show that a 1U CubeSat can be de-orbited using a 1.7 meter diameter spherical device in just under one year while using 0.7 grams of inflating gas, this is compared to over 25 years without any method of post-mission disposal.
66

Simulation of a Configurable Hybrid Aircraft

Bartlett, Brandon 01 June 2021 (has links) (PDF)
As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, computational tools that are capable of simulating the performance of a hybrid aircraft are incredibly useful in the design process and research space. Existing work on the simulation of hybrid aircraft focuses on modelling a specific hybrid propulsion system in a particular airframe, but it would be desirable to have a simulation tool that is not specific to one design. In this thesis, a simulation framework that can be easily configured for different types of hybrid structures and components is presented, and the simulator is validated using flight test data which demonstrates that the performance of the simulated aircraft is representative of a real aircraft. A design for a hybrid aircraft is also modelled and simulated over different flight profiles in order to study the performance of the hybrid propulsion system. Results indicate that the hybrid aircraft can be successfully simulated and demonstrate how the simulator can be used as a tool to study the best way to fly and operate a hybrid aircraft.
67

Implementation of a ¼ Inch Hollow Cathode Into a Miniature Xenon Ion Thruster (MiXI)

Knapp, David Wayne 01 June 2012 (has links) (PDF)
Over the last decade, miniature ion thruster development has remained an active area of research do to its low power, low thrust, and high efficiency, however, due to several technical issues; a flight level miniature ion thruster has proved elusive. This thesis covers the design, fabrication, assembly, and test of an altered version of the Miniature Xenon Ion thruster (MiXI), originally developed by lead engineer Dr. Richard Wirz, at the California Institute of Technology (Caltech). In collaboration with Dr. Wirz, MiXI-CP-V3 was developed at Cal Poly San Luis Obispo with the goal of implementing of a ¼ inch hollow cathode and 3mmx3mm plasma confinement magnets in order to improve the plasma confinement characteristics, reliability, and performance of the MiXI design. Operational testing revealed a mass utilization efficiency of 35-75% and a discharge loss of 550-1200 eV/ion over plasma discharge currents of 0.5-1.5A and propellant flow rates of 0.8-1.3 SCCM. Testing revealed that the MiXI thruster can be operated with a hollow cathode and observations and data gained from this study have led to a greater understanding of the operational parameters of the MiXI thruster, and will contribute to the development and advancement of the MiXI baseline design, with the goal of creating an efficient and reliable flight level miniature ion thruster.
68

Thermal Models for a 3 cm Miniature Xenon Ion Thruster

Younger, Coleman Thomas 01 December 2010 (has links) (PDF)
In order to support UCLA’s development of the 3 cm Miniature Xenon Ion (MiXI) thruster, Cal Poly has a 3 cm thruster under development. This version, called MiXI Cal Poly Version 1 (MiXI-CPv1), is complete and has been utilized in vacuum chamber thermal validation testing. Testing on this version was used to check the validity of heat transfer simulations modeled in SolidWorks. Investigations of the 3 cm ion thruster configuration were intended to discover the driving factors affecting the thermal behavior of the discharge chamber and surrounding design space. Numerical simulations indicate that the heating of the samarium cobalt permanent magnets can be mitigated through the implementation of two proposed modifications. The first modification is to implement a 2% thoriated tungsten filament cathode. This design exhibited maximum permanent magnet temperatures of 325°C, twenty-five degrees below the maximum upper temperature of 350°C. Since some magnetic degaussing effects have been observed at temperatures above 300°C, the aforementioned solution can be combined with a thruster design modification to achieve a reduced permanent magnet temperature of 298°C. This modification would involve increase the anode wall thickness from approximately 0.7 mm to 2 mm below the permanent magnet ring, creating a stepped anode design. Additionally, less effective solutions were proposed and modeled and are presented for completeness.
69

Experimental Investigation of a 2-D AIR Augmented Rocket: High Pressure Ratio and Transient Flow-Fields

Sanchez, Josef S 01 March 2012 (has links) (PDF)
A 2-D Air Augmented Rocket, the Cal Poly Air Augmented Rocket (CPAAR) Test Apparatus operating as a mixer-ejector was tested to investigate high stagnation pressure ratio and transient flow fields of an ejector. The primary rocket ejector was supplied with high pressure nitrogen at a maximum chamber pressure of 1758 psia and a maximum mass flow rate of 1.4 lb/s. The secondary flow air was entrained from a fixed volume plenum chamber producing pressures as low as 3.3 psia. The maximum total pressure ratio achieved was 221. The original CPAAR apparatus was rebuilt re-instrumented and capability expanded. A fixed volume plenum was attached to the secondary ducts through a constant area square section to mimic the cross section of the secondary ducts with a bell mouth inlet. The mixing duct length was increased from 8 in. to 18 in. An investigation of the mixing duct flow-field was done with data from pressure and temperature instrumentation. A study of the transient operation of the rocket was compared with results from former research to qualify the quasi-steady assumption of the flow-field. The CPAAR produced Fabri-choked operation, the startup transient observed caused the secondary flow to become established during Fabri-choke mode operation. The supersonic saturated mode was not observed during quasi-steady operation. The quasi-steady operation was defined based on characteristics from previous quasi-steady models of transient operation of supersonic ejectors. The measurement of the data during testing resulted in a 2.96% experimental uncertainty in the entrainment ratio calculation. The smallest entrainment ratio observed was 0.05 at a total pressure ratio of 220. The location of the Fabri-choke point was shown through the interpretation of the primary and secondary flow as a result of the pressure and temperature measurements. The experimental evidence showed the location of the secondary choke point has a logarithmic relationship with the total pressure ratio. At a total pressure ratio of 220, the area of the aerodynamic throat of the secondary flow is 0.26 in2 and the location occurs 6 inches downstream from the nozzle exit. The secondary flow un-choke is related to the breakdown of the shock structure of the primary flow and produces a flow-field asymmetry which blocks the right duct flow. The CPSE simulation was unable to accurately predict AAR performance when the inputs are changed from the original CPAAR configuration. At high pressure ratios (PR=220), the error in the prediction is 90%.
70

The Exploration of Rotating Detonation Dynamics Incorporating a Coal-Based Fuel Mixture

Rogan, John P. 01 January 2018 (has links) (PDF)
This investigation explores the detonation dynamics of a rotating detonation engine (RDE). Beginning with the general understanding and characteristics of hydrogen and compressed air as a detonation fuel source, this study further develops the experimental approach to incorporating a coal-based fuel mixture in an RDE. There is insufficient prior research investigating the use of coal as part of a fuel mixture and insignificant progress being made to improve thermal efficiency with deflagration. The U.S. Department of Energy's Office of Fossil Energy awarded the Propulsion and Energy Research Laboratory at the University of Central Florida a grant to lead the investigation on the feasibility of using a coal-based fuel mixture to power rotating detonation engines. Through this study, the developmental and experimental understanding of RDEs has been documented, operability maps have been plotted, and the use of a coal-based fuel mixture in an RDE has been explored. The operability of hydrogen and compressed air has been found, a normalization of all operable space has been developed, and there is evidence indicating coal can be used as part of a fuel mixture to detonate an RDE. The study will continue to investigate coal's use in an RDE. As the most abundant fossil fuel on earth, coal is a popular fuel source in deflagrative combustion for electrical power generation. This study investigates how the combustion of coal can become significantly more efficient.

Page generated in 0.3588 seconds