• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of different basal forebrain regions in odor behavior

Siri, Tiziano 23 September 2024 (has links)
Le bulbe olfactif (OB) est le premier centre de traitement des informations olfactives où l'entrée est traitée par un réseau complexe de neurones. L'OB décode les informations sur l'appétence des aliments, les dangers et influence l'attention et la mémoire. Dans l'OB la population cellulaire la plus nombreuse est représentée par les cellules granulaires (GC). Le processus de prolifération, de migration et de différenciation des précurseurs des GC se poursuit tout au long de l'âge adulte. Au sein de l'OB, un autre groupe cellulaire important est représenté par les cellules profondes à axone court (dSAC) qui contrôlent, potentiellement, l'activité de centaines de GC à la fois. Bien que la complexité de l'OB fournisse un réseau complexe capable de décoder un grand nombre de molécules, son activité est modulée par le biais de plusieurs régions du cerveau, qui contribuent à contrôler des groupes neuronaux spécifiques. L'une des régions cérébrales les plus important impliquée dans la modulation du signal OB est représentée par le prosencéphale basal (BF). Le BF est une grande structure cérébrale composée de plusieurs régions vaguement définies et avec une population neuronale hétérogène. Au sein du BF, il est possible de trouver des populations GABAergiques, cholinergiques et glutamatergiques, qui contribuent par leur activité aux différentes fonctions comportementales régulées par cette aire cérébrale. L'activité du composant BF GABAergique semble être principalement impliquée dans le comportement alimentaire et motivationnel. Bien que plusieurs études aient décrit les effets de l'entrée des trois neurotransmetteurs libérés par le BF sur l'OB, à notre connaissance, il n'y a pas eu d'étude approfondie décrivant la proportion des cellules OB recevant l'entrée de cette structure. Dans ce travail, nous avons étudié le rôle fonctionnel d'un groupe de neurones GABAergiques dans la *substantia innominata* (SI) du BF. Nous avons examiné le groupe de neurones au sein de l'OB recevant une entrée du SI et nous avons révélé que les populations recevant la proportion la plus élevée de connexions de cette structure sont les GC nés adultes et les cellules de Blanes, une population de dSAC. Nous avons constaté que l'activation aiguë *in vivo* des neurones dans l'SI projetant au OB augmentait le temps passé à étudier les odeurs naturelles (complexes) mais pas monomoléculaires. De plus, nous avons montré que l'inactivation chimiogénétique des neurones projetant SI au OB altérait la capacité discriminatoire fins des animaux. Nos résultats montrent que les neurones SI se projettent sur des populations de neurones spécifiques dans l'OB et suggèrent que les neurones projetant SI OB peuvent avoir des effets distincts sur le traitement et le comportement des odeurs. Dans la deuxième partie de ce travail, nous avons utilisé des méthodes de traçage rétrograde et antérograde combinées à des enregistrements *patch-clamp*, des approches optogénétiques et chimiogénétiques, ainsi que des tests de discrimination des odeurs *go/no-go* pour identifier un schéma de projection spécifique de la cellules calrétinine+ (CR+) GABAergique dans le membre horizontal de la bande diagonale de Broca (HDB) du prosencéphale basal dans l'OB. Bien que les neurones GABAergiques HDB se projettent sur toutes les couches de l'OB, les neurones CR + projetent l'OB innervent le GCL mais pas le GL. La stimulation optogénétique des projections axonales CR + dans les tranches OB a provoqué des courants GABAergiques monosynaptiques dans les GC, tandis que l'inhibition chimiogénétique des neurones CR + dans le HDB lors d'une tâche de mémoire et d'association d'odeurs *go/no-go* a entraîné une altération de la discrimination et de l'apprentissage des odeurs. Nos résultats révèlent un schéma de projection spécifique au sous-type d'une population spécifique de neurones HDB dans l'OB et indiquent que les projections HDB GABAergiques peuvent avoir des effets distincts sur le traitement et l'apprentissage des informations olfactives. / The olfactory bulb (OB) is the first processing center for olfactory information where the input is processed by an intricate network of neurons. The OB decodesinformation about the food's palatability, and potential harm, influences attention and memory. In the OB the most numerous cell population is represented by the granule cells (GCs). The process of GCs precursor's proliferation, migration, and differentiation continues throughout adulthood. Within the OB another important cell group is represented by the deepshort axon cells (dSACs) which control the activity of, potentially, hundreds of GCs at once. Although the OB complexity provides an intricate network capable of decoding a vast number of molecules, its activity is modulated by the input from multiple brain regions, which contribute to control specific neuronal groups. One of the most important brain regions involved in the OB signal modulation is represented by the basal forebrain (BF). The BF is a large brain structure composed of several, loosely defined regions and with a heterogeneous neuronal population. Within the BF, it is possible to find GABAergic, cholinergic and glutamatergic populations, which contribute with their activity to the different behavioral functions regulated by this brain area. The activity of the BF GABAergic component seems to be mainly involved in feeding and motivational behavior. Although several studies have described the effects of the input of the three neurotransmitters released by the BF onto the OB, to our knowledge, there has been not a comprehensive study describing the proportion of the OB cells receiving input from this structure. In this work, we investigated the functional role of a GABAergic group of neurons in the substantia innominata (SI) of the BF. We examined the group of neurons within the OB receiving input from the SI and we revealed that the populations receiving with the higher proportion of connections from this structure are adult-born GCs and Blanes cells, a population of dSACs. We found that the acute *in vivo* activation of OB-projecting SI neurons increased the time spent investigating natural (complex) but not monomolecular odors. Furthermore, we showed that the chemogenetic inactivation of OB-projecting SI neurons impaired the fine animals' discriminatory ability. Our findings show that SI neurons project to specific neuron populations in the OB and suggest that OB-projecting SI neurons may have distinct effects on odor processing and behavior. In the second part of this work, we used retrograde and anterograde tracing methods combined with patch-clamp recordings, optogenetic and chemogenetic approaches, as well as go/no-go odor discrimination tests to identify a specific projection pattern of calretinin+ (CR+) GABAergic cells in the horizontal limb of the diagonal band of Broca (HDB) of the BF in the OB. Although GABAergic HDB neurons project to all layers of the OB, OB-projecting CR+ neurons innervate the GCL but not the GL. Optogenetic stimulation of CR+ axonal projections in OB slices elicited monosynaptic GABAergic currents in GCs, while chemogenetic inhibition of CR+ neurons in the HDB during a go/no-go odor memory and associationtask led to impairment in odor discrimination and learning. Our results reveal a subtype-specific projection pattern of a specific population of HDB neurons in the OB and indicate that HDB GABAergic projections may have distinct effects on odor information processing and learning.
2

Le développement des sous-populations des neurones producteurs de l'hormone de mélano-concentration reflète un changement de l'organisation précoce du prosencéphale de l'embryon de rongeur

Croizier, Sophie 22 June 2011 (has links) (PDF)
Les neurones exprimant l'hormone de mélano-concentration (MCH) sont observés dans l'hypothalamus postérieur de tous les vertébrés, de la lamproie à l'Homme. Ces neurones sont impliqués dans diverses fonctions comme le cycle veille/sommeil ou la prise alimentaire. Ils forment une population non homogène et au moins deux sous-populations sont reconnues, chez le rat. La première sous-population est composée de neurones nés au 11ème jour de vie embryonnaire (E11) qui projettent massivement sur les régions les plus postérieures du système nerveux central. La seconde est générée à E12/E13 et les neurones la caractérisant projettent sur les régions les plus antérieures du cerveau et expriment le peptide CART (cocaine and amphetamine regulated transcript) et le récepteur NK3 (neurokinine). L'objectif de notre travail était de comprendre l'origine de ces deux sous-populations. Pour cela, nous avons utilisé des approches histologiques, moléculaires et in vitro. Les neurones à MCH sont parmi les premiers neurones à naître et à différencier leur phénotype chimique le long d'une région longitudinale définie par une prolifération intense, appelée " cell cords " par Keyser en 1972. Cette bande longitudinale est caractérisée par l'expression de gènes comme Sonic Hedgehog (Shh), Nkx2.1, Nkx2.2 et a été récemment renommée " diagonale intrahypothalamica " ou ID. La différenciation des neurones à MCH dépend de l'expression du facteur morphogène Shh et ces neurones expriment Nkx2.1 et Nkx2.2, facteurs de transcription régulés positivement par Shh. Les neurones de la première sous-population envoient des projections le long du premier tractus longitudinal à se mettre en place, le tractus postopticus (tpoc). Ceux issus de la deuxième sous-population se différencient concomitamment au développement des régions télencéphaliques et leurs projections changent de direction pour innerver les régions antérieures du cerveau sous la dépendance de protéines de guidage axonal, Nétrine1 et Slit2. Nétrine1 permet d'attirer les axones MCH exprimant le récepteur DCC précocement vers la moelle épinière et plus tardivement vers le télencéphale alors que Slit2 contraint les axones MCH exprimant Robo2 à sortir de l'hypothalamus. L'étude du modèle " MCH " permet de mettre en lumière un changement d'organisation précocement au cours du développement dans l'axe longitudinal du prosencéphale. La bande longitudinale d'expression des facteurs de transcription Shh, Nkx2.2 peut être perçue comme une extension rostrale de la colonne neurogénique médiane déjà décrite chez des espèces d'invertébrés possédant une symétrie bilatérale. Les neurones générés le long de cette colonne le sont très tôt au cours du développement.
3

Divergent Evolution of Brain Structures and Convergence of Cognitive Functions in Vertebrates : the Example of the Teleost Zebrafish / Évolution divergente des structures cérébrales et convergence des fonctions cognitives chez les vertébrés : l'exemple d'un téléostéen, le poisson zèbre

Bloch, Solal 02 April 2019 (has links)
L'objectif de mon projet de recherche était de faire le lien entre structures cérébrales et fonctions, pour mieux comprendre les bases de la cognition. La première partie de ma thèse a été de développer des tests comportementaux pour analyser la cognition et ses fondamentaux. Les résultats suggèrent fortement que les téléostéens possèdent des fonctions exécutives semblables à celles des mammifères. J’ai par la suite cherché le substrat anatomique de ces capacités cognitives nouvellement mises à jour chez cette espèce, notamment dans le pallium (équivalent du cortex cérébral des mammifères). Cependant la neuroanatomie du poisson zèbre adulte est mal connue, car il est souvent utilisé au stade larvaire. Une seconde partie de mon travail a cherché à analyser et identifier l'origine développementale des structures cérébrales adultes. Nous avons découvert que certaines structures considérées jusqu'ici comme faisant partie du cerveau antérieur (prosencéphale) font en fait partie du cerveau médian (mésencéphale) chez le poisson zèbre. L’une de ces structures est le lobe inférieur, précédemment considéré comme hypothalamique. Une autre structure est le noyau préglomérulaire, le noyau sensoriel relais majeur et analogue fonctionnel du thalamus. Cette voie sensorielle contient la principale voie visuelle vers le pallium. Ainsi, même si certaines structures ont la même fonction, elles peuvent avoir une origine évolutive et développementale différente des structures connues chez les mammifères. En résumé, des fonctions similaires ont évolué indépendamment chez les amniotes et les téléostéens. Ce travail élargit ainsi les champs d'application pour la recherche en neurosciences, et permet d'approcher les fondamentaux de la cognition de manière nouvelle par l'identification des structures essentielles à l'émergence d'une cognition de haut niveau telle qu'elle est observée dans l'espèce humaine. / The aim of my research project was to link brain structures and functions, to better understand the fundamental bases of cognition. The first part of my thesis consisted in the development of behavioral tests to analyze the essential principles of cognition. The results strongly suggest the existence of executive functions in teleosts similar to those of mammals. Then I looked for the anatomical structures responsible for these cognitive capacities, in particular in the pallium (equivalent of the mammalian cerebral cortex). However, little is known about adult zebrafish neuroanatomy. Indeed, zebrafish is often studied at larval stage. A second part of my work aimed at studying adult structures in more detail through their developmental origin. This has redefined some parts of the brain. We have discovered that some of the structures that were considered as part of the forebrain (prosencephalon) are actually part of the midbrain (mesencephalon) in zebrafish. This includes the inferior lobe, previously classified as hypothalamus. Another structure is the major sensory relay nucleus, the preglomerular nucleus, functional analogue of the thalamus (part of the forebrain) in amniotes. This sensory pathway contains the main visual pathway to the pallium. Thus, even if some structures have the same function, they may have an evolutionary and developmental origin different from structures known in mammals. In summary, similar functions have independently evolved in amniotes and teleosts. This comparative work adds new perspectives for neuroscience research. It also allows us to approach the fundamentals of cognition in a new way: what are the essential building blocks for a higher level of cognition like the human one?
4

Le développement des sous-populations des neurones producteurs de l'hormone de mélano-concentration reflète un changement de l'organisation précoce du prosencéphale de l'embryon de rongeur / Development of posterior diencephalic neurons enlightens a switch in the prosencephalic bauplan

Croizier, Sophie 22 June 2011 (has links)
Les neurones exprimant l'hormone de mélano-concentration (MCH) sont observés dans l'hypothalamus postérieur de tous les vertébrés, de la lamproie à l'Homme. Ces neurones sont impliqués dans diverses fonctions comme le cycle veille/sommeil ou la prise alimentaire. Ils forment une population non homogène et au moins deux sous-populations sont reconnues, chez le rat. La première sous-population est composée de neurones nés au 11ème jour de vie embryonnaire (E11) qui projettent massivement sur les régions les plus postérieures du système nerveux central. La seconde est générée à E12/E13 et les neurones la caractérisant projettent sur les régions les plus antérieures du cerveau et expriment le peptide CART (cocaine and amphetamine regulated transcript) et le récepteur NK3 (neurokinine). L'objectif de notre travail était de comprendre l'origine de ces deux sous-populations. Pour cela, nous avons utilisé des approches histologiques, moléculaires et in vitro. Les neurones à MCH sont parmi les premiers neurones à naître et à différencier leur phénotype chimique le long d'une région longitudinale définie par une prolifération intense, appelée " cell cords " par Keyser en 1972. Cette bande longitudinale est caractérisée par l'expression de gènes comme Sonic Hedgehog (Shh), Nkx2.1, Nkx2.2 et a été récemment renommée " diagonale intrahypothalamica " ou ID. La différenciation des neurones à MCH dépend de l'expression du facteur morphogène Shh et ces neurones expriment Nkx2.1 et Nkx2.2, facteurs de transcription régulés positivement par Shh. Les neurones de la première sous-population envoient des projections le long du premier tractus longitudinal à se mettre en place, le tractus postopticus (tpoc). Ceux issus de la deuxième sous-population se différencient concomitamment au développement des régions télencéphaliques et leurs projections changent de direction pour innerver les régions antérieures du cerveau sous la dépendance de protéines de guidage axonal, Nétrine1 et Slit2. Nétrine1 permet d'attirer les axones MCH exprimant le récepteur DCC précocement vers la moelle épinière et plus tardivement vers le télencéphale alors que Slit2 contraint les axones MCH exprimant Robo2 à sortir de l'hypothalamus. L'étude du modèle " MCH " permet de mettre en lumière un changement d'organisation précocement au cours du développement dans l'axe longitudinal du prosencéphale. La bande longitudinale d'expression des facteurs de transcription Shh, Nkx2.2 peut être perçue comme une extension rostrale de la colonne neurogénique médiane déjà décrite chez des espèces d'invertébrés possédant une symétrie bilatérale. Les neurones générés le long de cette colonne le sont très tôt au cours du développement. / Neurons expressing melanin-concentrating hormone (MCH) are observed in the vertebrate posterior hypothalamus, from lampreys to humans. These neurons are involved in various functions such as sleep/wake cycle or food intake. They form a non-homogeneous population and at least two sub-populations are indentified in the rat. The first sub-population is composed of neurons born on the 11th embryonic day (E11) that project heavily on posterior regions of the central nervous system. The second is characterized by neurons born at E12/E13, projecting in anterior regions of the brain and expressing the peptide CART (cocaine and amphetamine Regulated Transcript) and the NK 3 receptor (neurokinin). The aim of this study was to understand the origin of these two sub-populations. For this, we used histological, molecular and in vitro approaches. MCH neurons are among the first neurons to be born and to differentiate their chemical phenotype along a longitudinal region defined by intense proliferation and called " cell cord " by Keyser in 1972. This longitudinal band is characterized by the expression of genes such as Sonic Hedgehog (Shh), Nkx2.1, Nkx2.2 and was recently named " diagonal intrahypothalamica " or ID. Differenciation of MCH neurons depends on expression of the morphogenetic factor Shh and these neurons express Nkx2.1 and Nkx2.2, transcription factors upregulated by Shh. The neurons of the first sub-population send projections along the tractus postopticus (tpoc), which is the first longitudinal tract to develop. Neurons of the second sub-population differentiate concomitantly to the development of the basal forebrain and their projections innervate anterior brain regions. Our results obtained in vitro showed that Netrin1 attracts MCH axons and that this reponse is mediated by DCC. Slit2 repulses MCH axons and this reponse is mediated by the Robo2 receptor. Overall, our study of the development of the MCH system shed light on an organizational change in the longitudinal axis of the forebrain during early development : a primary longitudinal organization characterized by the longitudinal expression of Shh and Nkx2.2 and the path of the tractus postopticus in the diencephalon and mesencephalon. MCH neurons of the first sub-population develop during this stage. Then, as the basal telencephalon extends and expresses Netrin1, the medial forebrain bundle differentiates, inducing a change in the main axis of the forebrain ; meanwhile MCH neurons of the second sub-population appear. MCH sub-populations reflect distinct developmental stages of the forebrain.
5

Le développement des sous-populations des neurones producteurs de l'hormone de mélano-concentration reflète un changement de l'organisation précoce du prosencéphale de l'embryon de rongeur / Development of posterior diencephalic neurons enlightens a switch in the prosencephalic bauplan

Croizier, Sophie 22 June 2011 (has links)
Les neurones exprimant l'hormone de mélano-concentration (MCH) sont observés dans l'hypothalamus postérieur de tous les vertébrés, de la lamproie à l'Homme. Ces neurones sont impliqués dans diverses fonctions comme le cycle veille/sommeil ou la prise alimentaire. Ils forment une population non homogène et au moins deux sous-populations sont reconnues, chez le rat. La première sous-population est composée de neurones nés au 11ème jour de vie embryonnaire (E11) qui projettent massivement sur les régions les plus postérieures du système nerveux central. La seconde est générée à E12/E13 et les neurones la caractérisant projettent sur les régions les plus antérieures du cerveau et expriment le peptide CART (cocaine and amphetamine regulated transcript) et le récepteur NK3 (neurokinine). L'objectif de notre travail était de comprendre l'origine de ces deux sous-populations. Pour cela, nous avons utilisé des approches histologiques, moléculaires et in vitro. Les neurones à MCH sont parmi les premiers neurones à naître et à différencier leur phénotype chimique le long d'une région longitudinale définie par une prolifération intense, appelée " cell cords " par Keyser en 1972. Cette bande longitudinale est caractérisée par l'expression de gènes comme Sonic Hedgehog (Shh), Nkx2.1, Nkx2.2 et a été récemment renommée " diagonale intrahypothalamica " ou ID. La différenciation des neurones à MCH dépend de l'expression du facteur morphogène Shh et ces neurones expriment Nkx2.1 et Nkx2.2, facteurs de transcription régulés positivement par Shh. Les neurones de la première sous-population envoient des projections le long du premier tractus longitudinal à se mettre en place, le tractus postopticus (tpoc). Ceux issus de la deuxième sous-population se différencient concomitamment au développement des régions télencéphaliques et leurs projections changent de direction pour innerver les régions antérieures du cerveau sous la dépendance de protéines de guidage axonal, Nétrine1 et Slit2. Nétrine1 permet d'attirer les axones MCH exprimant le récepteur DCC précocement vers la moelle épinière et plus tardivement vers le télencéphale alors que Slit2 contraint les axones MCH exprimant Robo2 à sortir de l'hypothalamus. L'étude du modèle " MCH " permet de mettre en lumière un changement d'organisation précocement au cours du développement dans l'axe longitudinal du prosencéphale. La bande longitudinale d'expression des facteurs de transcription Shh, Nkx2.2 peut être perçue comme une extension rostrale de la colonne neurogénique médiane déjà décrite chez des espèces d'invertébrés possédant une symétrie bilatérale. Les neurones générés le long de cette colonne le sont très tôt au cours du développement. / Neurons expressing melanin-concentrating hormone (MCH) are observed in the vertebrate posterior hypothalamus, from lampreys to humans. These neurons are involved in various functions such as sleep/wake cycle or food intake. They form a non-homogeneous population and at least two sub-populations are indentified in the rat. The first sub-population is composed of neurons born on the 11th embryonic day (E11) that project heavily on posterior regions of the central nervous system. The second is characterized by neurons born at E12/E13, projecting in anterior regions of the brain and expressing the peptide CART (cocaine and amphetamine Regulated Transcript) and the NK 3 receptor (neurokinin). The aim of this study was to understand the origin of these two sub-populations. For this, we used histological, molecular and in vitro approaches. MCH neurons are among the first neurons to be born and to differentiate their chemical phenotype along a longitudinal region defined by intense proliferation and called " cell cord " by Keyser in 1972. This longitudinal band is characterized by the expression of genes such as Sonic Hedgehog (Shh), Nkx2.1, Nkx2.2 and was recently named " diagonal intrahypothalamica " or ID. Differenciation of MCH neurons depends on expression of the morphogenetic factor Shh and these neurons express Nkx2.1 and Nkx2.2, transcription factors upregulated by Shh. The neurons of the first sub-population send projections along the tractus postopticus (tpoc), which is the first longitudinal tract to develop. Neurons of the second sub-population differentiate concomitantly to the development of the basal forebrain and their projections innervate anterior brain regions. Our results obtained in vitro showed that Netrin1 attracts MCH axons and that this reponse is mediated by DCC. Slit2 repulses MCH axons and this reponse is mediated by the Robo2 receptor. Overall, our study of the development of the MCH system shed light on an organizational change in the longitudinal axis of the forebrain during early development : a primary longitudinal organization characterized by the longitudinal expression of Shh and Nkx2.2 and the path of the tractus postopticus in the diencephalon and mesencephalon. MCH neurons of the first sub-population develop during this stage. Then, as the basal telencephalon extends and expresses Netrin1, the medial forebrain bundle differentiates, inducing a change in the main axis of the forebrain ; meanwhile MCH neurons of the second sub-population appear. MCH sub-populations reflect distinct developmental stages of the forebrain.
6

Implication de la voie de signalisation Notch dans l'organisation précoce du prosencéphale de l'embryon de poulet : application à la physiopathologie de l'holoprosencéphalie / Involvement of Notch pathway in the patterning of early prosencephalon of chick embryo : application to the physiopathology of Holoprosencephaly

Ratié, Leslie 19 December 2013 (has links)
L'holoprosencéphalie (HPE) est une maladie rare due à une anomalie du développement précoce du prosencéphale. Les gènes impliqués appartiennent à des voies de signalisation cruciales pour le développement embryonnaire telles que les Nodal, Shh et Fgf. Des mutations de ces gènes n'expliquent que 30% des cas d'HPE. Différentes stratégies ont été mises en œuvre pour déterminer de nouveaux gènes responsables de l'HPE. Récemment, des délétions du gène DLL1, un ligand du récepteur Notch ont été identifiées chez des patients HPE. L'objectif de mon travail de thèse était de tester l'hypothèse d'un rôle de la voie Notch au cours du développement précoce du prosencéphale. Dans ce but, une inhibition de la voie Notch a été réalisée en utilisant une culture ex ovo d'embryon de poulet. Grâce à cela, j'ai pu identifier une activité de la voie Notch au niveau de l'hypothalamus présomptif, une structure ventrale du cerveau antérieur. Une approche transcriptomique a ensuite permis d'identifier les dérégulations survenant lors de l'inhibition pharmacologique de la voie Notch. Les expressions des cibles trancriptionnelles de la voie Notch telles que Hes5, Hey1, Ascl1 ou Nhlh1 m'ont permis de suggérer un modèle d'action par inhibition latérale lors de la neurogénèse de l'hypothalamus en développement. Les données transcriptomiques générées m'ont permis d'identifier de nouveaux gènes marqueurs de l'hypothalamus dont l'expression est sous l'influence de la voie Notch. Nos résultats suggèrent que ces gènes appartiennent à une boucle de régulation comprenant la voie Notch et des facteurs de neurogénèse tels que les gènes proneuraux. Mon travail a également permis de montrer que l'expression du gène majeur de l'HPE, le gène Shh, requérait une activité de la voie Notch précisément au niveau de l'hypothalamus. En conclusion, mes résultats montrent que la voie Notch contribue au développement précoce du cerveau. Ce constat ajoute un autre niveau de complexité à l'apparition de l'HPE et apporte de nouveaux arguments en faveur d'un modèle « multi-hit » pour cette pathologie. / Holoprosencephaly (HPE) is a rare disease corresponding to a failure of early prosencephalon development. Genes involved in HPE, belong to crucial signalling pathways for embryonic development as Nodal, Shh and Fgf. Mutations in these genes could explain only 30% of HPE cases. Different strategies were used to identify new genes in HPE. Recently, deletions of DLL1, a ligand of Notch receptor, have been identified in HPE patients. The aim of my thesis was to test hypothesis that Notch pathway has a role during the early prosencephalon development. First, I performed a pharmacological inhibition of Notch pathway in embryos that were cultured ex ovo. Thus, I could identify Notch activity at the level of primordium hypothalamus, a ventral structure of prosencephalon. Then, transcriptomic analyses were performed to identify deregulations occurring during Notch inhibition. Expressions of well known transcriptional targets of Notch pathway, Hes5, Hey1, Ascl1 and Nhlh1, indicated that Notch pathway might act by lateral inhibition in the neurogenesis of developing hypothalamus. From transcriptomic data, we identified novel markers of developing hypothalamus that will be regulated by Notch pathway. Our results suggest that these novel genes could be involved in the regulatory loop associating with Notch pathway and proneural genes. Then, I demonstrated that Notch activity is required to maintain Shh expression, a major gene involved in HPE, particularly in the hypothalamus. To conclude, adding the Notch pathway in the signalling pathway network involved in prosencephalon development, we provide other complexity level in the HPE appearance. Thus, these results support the hypothesis of a « multi-hit » model of HPE.
7

Rôle du facteur RFX3 dans la formation du cerveau chez l'embryon de souris

Benadiba, Carine 24 October 2008 (has links) (PDF)
Les membres de la famille de facteur de transcription RFX sont extrêment conservés au cours de l'évolution et sont retrouvés de la levure aux mammifères. Au sein de notre laboratoire, nous disposons d'un modèle murin Rfx3. Au cours de mon doctorat, j'ai entrepris d'analyser le phénotype cérébral de ce mutant. Il est ressorti de cette étude que les souris Rfx3 présentent de multiples atteintes cérébrales au niveau de l'Organe Sous Commissural, de la Glande Pinéale, des Plexus Choroïdes et de la Commissure Postérieure. L'analyse de la formation du cerveau, chez ces mutants, a révélé qu'une mauvaise spécification de la ligne médiane dorsale du prosencéphale peut en être à l'origine. Comme RFX3, est un régulateur de la ciliogenèse, ces travaux supposent l'existence d'un nouveau rôle des cils dans la genèse cérébrale. Appuyant cette hypothèse, une des atteintes cérébrales classiquement rencontrées chez les patients souffrant de ciliopathies, qu'est l'agénésie callosale, est également retrouvée chez les mutants murins Rfx3. Et l'analyse de la région de formation du Corps Calleux, en contexte mutant, a mis en évidence des défauts cellulaires pouvant expliquer cette atteinte cérébrale majeure. L'ensemble des travaux réalisés sur ce modèle murin de ciliopathie permettent progressivement d'apporter des réponses essentielles quant aux mécanismes physiopathologiques des ciliopathies.

Page generated in 0.057 seconds