• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 40
  • 17
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 289
  • 43
  • 23
  • 20
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

NSAID effect on prostanoids in fishes prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen /

Bhandari, Khageshor. Venables, Barney J., January 2009 (has links)
Thesis (M.S.)--University of North Texas, Aug., 2009. / Title from title page display. Includes bibliographical references.
92

Role of nitric oxide in the regulation of vascular responses mediated by prostaglandin and endothelium-derived hyperpolarizing factor in theporcine coronary artery

Chow, Kin-hong., 周健航. January 2011 (has links)
published_or_final_version / Pharmacology and Pharmacy / Master / Master of Medical Sciences
93

The role of the EP2 receptor for prostaglandin E2 in mouse skin carcinogenesis

Sung, You Me 28 August 2008 (has links)
Not available / text
94

Clinical applications of misoprostol in obstetrics and gynecology

倪淑慧, Ngai, Suk-wai, Cora. January 2000 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
95

Effects of prostaglandins on peri-implantation development of mouse embryos

Chan, Siu-yuen., 陳小圓 January 1989 (has links)
published_or_final_version / abstract / Zoology / Master / Master of Philosophy
96

Induction of prostaglandin endoperoxide synthase 2 in the follicles of equine chorionic gonadotropinhuman chorionic gonadotropin treated prepubertal gilts

Cote, Fabienne. January 2001 (has links)
Prostaglandin G/H synthase-2 (PGHS-2) is a key rate limiting enzyme in the prostaglandin (PG) biosynthetic pathway, and PG synthesis is required for ovulation in pigs. The objective of this study was to characterize the expression and regulation of PGHS-2 in porcine follicles prior to ovulation. The combination of equine chorionic gonadotropin (eCG; 750 IU) followed by human chorionic gonadotropin (hCG; 500 IU) 72 h later was used to induce ovulation in prepubertal gilts. Previous studies have shown that ovulation is generally induced between 40 and 44 h post-hCG in this model. Ovariectomies were performed at 0, 24, 30, 34 and 38 h post-hCG (n = 4 or 5 animals per time-point), and all follicles larger than 4 mm in diameter were isolated. The regulation of PGHS-1 and PGHS-2 proteins was studied by immunohistochemistry and Western blot analyses, whereas the regulation of PGHS-2 mRNA was studied by Northern blot. PG production was assessed by radioimmunoassay (RIA). (Abstract shortened by UMI.)
97

Effects of a prostaglandin precursor, gamma-linolenic acid (GLA), on malignant cells in vitro and in vivo.

Ramchurren, Nirasha. January 1985 (has links)
Recent studies have shown that the proliferation of various human and murine tumour lines can be inhibited by the addition of gamma-linolenic acid (GLA) to the culture medium. These findings are consistent with the proposal put forward by Horrobin (1980) that malignant cells lack the enzyme/ A 6 desaturase; which is responsible for the conversion of linoleic acid (LA) to GLA. Since GLA is a prostaglandin (PG) precursor/ inadequate conversion of LA to GLA would result in decreased production of PGs/ particularly PGEi/ which has been shown to have an inhibitory effect on cell growth. Provision of GLA to enzyme deficient malignant cells should therefore bypass this blockade/ increase PGET synthesis and thus "normalise malignant cells". This study was performed to examine further the effects of exogenous GLA on growth of malignant cells in vitro and in vivo. Cells of the continuous murine sarcoma (M52B) line and primary cultures of non malignant fibroblasts were used to investigate effects of GLA in vitro. Cultures were exposed to either single or multiple doses of a range of concentrations of GLA. Radioimmunoassay (RIA) was performed to compare the amounts of PGE and PGF released into the medium by GLA treated and control M52B cultures and thus determine whether the addition of GLA in vitro significantly affected production of these PGs. Athymic BALB/c mice and immunocompetent BALB/c and Biozze mice as well as mice of the "Onderstepoort Strain" were used in various in vivo studies. Tumours were induced by the subcutaneous inoculation of approximately 1 x 106 cells of either the M52B line (into immunocompetent and athymic mice) or human breast carcinoma (NUB 1) line (into athymic mice). Take rates and latent periods were recorded. GLA treatment was initiated after tumours were established. In one study the fatty acid in hydrogenated coconut oil (HCO), which contains no PG precursors/ was administered parenterally (100 ug/ml/day) to Biozze mice. Control mice were either untreated or injected with HCO only. In another study, BALB/c mice and mice of the "Onderstepoort Strain" had their diet supplemented with GLA (in the form of EPO) to an extent of 3.5%. Control mice consumed either standard laboratory chow only or, chow supplemented with either 35% sunflower seed oil (SSO) or 35% HCO/ neither of which contain GLA. All diets were supplied ad libitum. Tumour sizes were measured every 48 hours and at the end of each experiment at which time tumours were excised and examined histologically. GLA was found to produce inhibitory and toxic effects on growth of both M52B cells and non malignant fibroblasts in vitro/ although the effect in the latter was observed only with high concentrations of the fatty acid. The inhibition of malignant cell growth was concentration dependant and was positively related to the duration of exposure to the fatty acid. Prior to death/ cells treated with GLA accumulated vii paranuclear granules which were shown histochemically to be lipid in nature. Electron microscopy confirmed the presence of large lipid deposits. Cultured M52B cells treated with GLA also released more PGE and PGF into the medium than did cells not exposed to the fatty acid. However, analysis of results using the Mann Whitney U test showed these differences to be statistically non significant for both PGE and PGF on two tailed tests. In contrast to the inhibition of M52B cell growth observed in vitro, growth of solid M52B sarcomas and NUB 1 carcinoma xenografts in athymic mice was apparently unaffected by administration of dietary GLA. Analysis of data using an unpaired student's t-test showed that the differences in tumour volumes between control and treated groups were not statistically significant either before or at the end of the experiment. While the inhibition of malignant cell growth caused by GLA in vitro was consistent with Horrobin's proposal that malignant cells may lack this PG precursor, whether or not these actions are mediated by the PGs remains obscure. Although an increase in PGE production by M52B cells was observed following GLA treatment, besides this increase being statistically non significant, it was not possible to determine whether this was due to PGE, (as suggested by Horrobin) or PGE2. It is possible that the effect produced in vitro was due to some factor other than raised PGE production, for example a non-specific fat-overload effect or a change in cell membrane fluidity. The lack of effect of GLA on tumour growth in vivo may have been due to inadequate delivery of the fatty acid to the tumour site. However, whatever the mechanism of action of GLA in vitro/ since oral GLA was supplemented to the maximum tolerated extent and produced no effect in immunodeficient mice inyiyo, it would seem that in a similar clinical situation oral doses which would be practical may be ineffective. / Thesis (M.Sc.)-University of Natal, Durban, 1985.
98

Molecular interactions between Entamoeba histolytica and colonic mucins

Belley, Adam. January 2000 (has links)
The enteric protozoan parasite Entamoeba histolytica is the etiologic agent of the disease amebiasis which is characterized by colitis or hepatic lesions. Amebae colonize the colon by binding to mucous glycoproteins (mucins). Secretory mucins provide the gel nature to mucus and are a vital component of epithelial barrier function. Mucins prevent contact-dependent cytolysis of colonic cells by E. histolytica. To possibly circumvent this barrier, the parasite secretes a potent yet unidentified mucin secretagogue, which could deplete the stored mucin pool and render the mucous layer less protective. The objective of this study was to investigate the molecular mechanisms by which E. histolytica modulates colonic mucin exocytosis. We showed that E. histolytica converts exogenous arachidonic acid to prostaglandin E2 (PGE2), a known mucin secretagogue and potential mechanism by which the parasite evokes mucin secretion. Conversion was via a novel cyclooxygenase-like activity and was inhibitable with the known cyclooxygenase inhibitor aspirin. To study E. histolytica-mucin interactions, we developed an in vitro model of LS174T human colonic epithelial cells that secrete mucin constitutively and in response to mucin agonists. Highly purified mucins isolated from LS174T cells markedly inhibited amebic adherence to target cells and the mucous barrier protected the LS174T monolayers from amebic cytolysis. We have identified that Gal and GalNAc residues (O-linked sugars) of mucins are the protective moiety as O- but not N-linked glycosylation inhibitors decreased their protective effect. To understand how mucins are regulated during intestinal amebiasis and in the inflamed gut, we determined that PGE2 binds the EP4 receptor on LS174T cells and in rat colon to stimulate cyclic adenosine monophosphate-dependent mucin exocytosis. Taken together, these studies delineate how E. histolytica modulates host responses during infection to allow the parasite to survive and persist in th
99

Prostaglandins in follicular development and ovulation in cattle

Algire, James Edgar January 1989 (has links)
No description available.
100

Control of prostaglandin biosynthesis by the intrauterine tissues in primary dysfunctional human labour.

Reddi, Kogie. January 1987 (has links)
No abstract available.

Page generated in 0.0791 seconds