Spelling suggestions: "subject:"protected trivial helical edge states"" "subject:"nprotected trivial helical edge states""
1 |
Blurring the boundaries between topological and non-topological physical phenomena in dots / Borrando a fronteira entre fenômenos físicos topológicos e não topológicos em poços quânticosCandido, Denis Ricardo 28 June 2018 (has links)
In this thesis, we investigate the electronic structure and transport properties of topologically trivial and non-trivial cylindrical quantum dots (QDs) defined by further confining InAs1-xBix/AlSb quantum wells (QWs). First we predict that common III-V InAs0.85Bi0.15/AlSb QWs can become 2D topological insulators (TIs) for well thicknesses dc > 6.9 nm with a topologically non-trivial gap of about 30 meV (> kBT), which can enable room temperature TI applications. Furthermore, we investigate the cylindrical QDs defined from these Bi-based wells by additional confinement, both in the topologically trivial (d < dc) and non-trivial (d > dc) regimes. Surprisingly, we find that topologically trivial and non-trivial QDs have similar transport properties in stark contrast with their 2D counterparts (i.e., a strip). More specifically, through detailed calculations, which involve an analytical solution of the quantum-dot eigenvalue problem, we demonstrate that both trivial and non-trivial cylindrical QDs possess edge-like states, i.e., helical spin-angular-momentum-locked quantum states protected against non-magnetic elastic scattering. Interestingly, our trivial QDs exhibit these geometrically robust helical states, similarly to topologically non-trivial QDs, over a wide range of system parameters (e.g., dot radius). We also calculate the circulating currents for the topologically trivial and non-trivial QDs and find no substantial differences. However, we note that ordinary III-V or II-VI cylindrical QDs (i.e., QDs not formed from a BHZ model + confinement) do not feature robust edge-like helical states. We further consider topologically trivial and non-trivial QDs with four edge-like states and calculate their two-terminal conductance G via a standard Green-function approach. For both trivial and non-trivial QDs we find that G shows a double-peak resonance at 2e2/h as a function of the dot radius R and gate voltage Vg controlling the dot energy levels. On the other hand, both trivial and non-trivial QDs can have edge-like and bulk state Kramers pairs coexisting at the same energy within the bulk part of their discrete spectra. In this case, G displays a single-peak resonance at 2e2/h as the four levels (two edge states and two bulk states now) become degenerate at some particular parameter values R = Rc and Vg = Vgc for both topologically trivial and non-trivial QDs. We also extend our investigation to HgTe-based QDs and find similar results. / Nesta tese investigamos a estrutura eletrônica e as propriedades de transporte de pontos quânticos cilíndricos topologicamente triviais e não-triviais, definidos por confinamento de poços quânticos (QWs) InAs1-xBix/AlSb. Primeiramente, nós prevemos que os QWs usuais baseados em InAs1-xBix/AlSb podem se tornar isolantes topológicos 2D para largura de poço dc > 6.9 nm, com um gap topologicamente não-trivial de aproximadamente 30 meV (> kBT), o que pode permitir aplicações em temperatura ambiente. Além disso, investigamos pontos quânticos cilíndricos definidos a partir de confinamento desses poços contendo Bi, em ambos os regimes trivial (d < dc) e não-trivial (d > dc). Surpreendentemente, descobrimos que os pontos quânticos topologicamente triviais e não triviais têm propriedades de transporte semelhantes, um resultado em grande contraste com as suas versões semiinfinitas, como por exemplo uma fita. Mais especificamente, através de cálculos detalhados, que envolvem uma solução analítica do problema de autovalores dos pontos quânticos, demonstramos que pontos quânticos cilíndricos triviais e não-triviais possuem estados de borda semelhantes, isto é, estados quânticos helicoidais protegidos contra espalhamento elástico não magnético. Curiosamente, nossos pontos quânticos triviais exibem estados helicoidais geometricamente robustos, similarmente aos pontos quânticos topologicamente não-triviais, em uma ampla faixa de parâmetros do sistema, como por exemplo, o raio do ponto quântico. Nós também calculamos as correntes circulantes para os pontos quânticos topologicamente triviais e não-triviais e não encontramos diferenças substanciais entre elas. No entanto, notamos que os pontos quânticos cilíndricos feitos de materiais ordinários III-V ou II-VI (isto é, pontos quânticos não descritos pelo Hamiltoniano BHZ com confinamento) não apresentam estados helicoidais robustos. Consideramos ainda pontos quânticos triviais e não-triviais com quatro estados de borda e calculamos sua condutância entre dois terminais G através de uma abordagem padrão das funções de Green. Para os pontos quânticos triviais e não-triviais, encontramos que G mostra uma ressonância de pico duplo em 2e2/h como função do raio do ponto quantico R e da tensão Vg que controla os níveis de energia do ponto quântico. Por outro lado, tanto os pontos quânticos triviais como os não-triviais podem ter pares de Kramers localizados na borda (edge) e em todo seu volume (bulk) coexistindo em uma mesma janela de energia na região dos estados de valência. Nesse caso, G exibe uma ressonância de pico único em 2e2/h, já que os quatro níveis (dois estados de borda e dois estados de volume bulk) se tornam degenerados para alguns valores de parâmetros particulares R = Rc and Vg = Vgc, em pontos quânticos topologicamente triviais e não triviais. Nós também estendemos nossa investigação para os pontos quanticos de HgTe onde encontramos resultados similares.
|
2 |
Blurring the boundaries between topological and non-topological physical phenomena in dots / Borrando a fronteira entre fenômenos físicos topológicos e não topológicos em poços quânticosDenis Ricardo Candido 28 June 2018 (has links)
In this thesis, we investigate the electronic structure and transport properties of topologically trivial and non-trivial cylindrical quantum dots (QDs) defined by further confining InAs1-xBix/AlSb quantum wells (QWs). First we predict that common III-V InAs0.85Bi0.15/AlSb QWs can become 2D topological insulators (TIs) for well thicknesses dc > 6.9 nm with a topologically non-trivial gap of about 30 meV (> kBT), which can enable room temperature TI applications. Furthermore, we investigate the cylindrical QDs defined from these Bi-based wells by additional confinement, both in the topologically trivial (d < dc) and non-trivial (d > dc) regimes. Surprisingly, we find that topologically trivial and non-trivial QDs have similar transport properties in stark contrast with their 2D counterparts (i.e., a strip). More specifically, through detailed calculations, which involve an analytical solution of the quantum-dot eigenvalue problem, we demonstrate that both trivial and non-trivial cylindrical QDs possess edge-like states, i.e., helical spin-angular-momentum-locked quantum states protected against non-magnetic elastic scattering. Interestingly, our trivial QDs exhibit these geometrically robust helical states, similarly to topologically non-trivial QDs, over a wide range of system parameters (e.g., dot radius). We also calculate the circulating currents for the topologically trivial and non-trivial QDs and find no substantial differences. However, we note that ordinary III-V or II-VI cylindrical QDs (i.e., QDs not formed from a BHZ model + confinement) do not feature robust edge-like helical states. We further consider topologically trivial and non-trivial QDs with four edge-like states and calculate their two-terminal conductance G via a standard Green-function approach. For both trivial and non-trivial QDs we find that G shows a double-peak resonance at 2e2/h as a function of the dot radius R and gate voltage Vg controlling the dot energy levels. On the other hand, both trivial and non-trivial QDs can have edge-like and bulk state Kramers pairs coexisting at the same energy within the bulk part of their discrete spectra. In this case, G displays a single-peak resonance at 2e2/h as the four levels (two edge states and two bulk states now) become degenerate at some particular parameter values R = Rc and Vg = Vgc for both topologically trivial and non-trivial QDs. We also extend our investigation to HgTe-based QDs and find similar results. / Nesta tese investigamos a estrutura eletrônica e as propriedades de transporte de pontos quânticos cilíndricos topologicamente triviais e não-triviais, definidos por confinamento de poços quânticos (QWs) InAs1-xBix/AlSb. Primeiramente, nós prevemos que os QWs usuais baseados em InAs1-xBix/AlSb podem se tornar isolantes topológicos 2D para largura de poço dc > 6.9 nm, com um gap topologicamente não-trivial de aproximadamente 30 meV (> kBT), o que pode permitir aplicações em temperatura ambiente. Além disso, investigamos pontos quânticos cilíndricos definidos a partir de confinamento desses poços contendo Bi, em ambos os regimes trivial (d < dc) e não-trivial (d > dc). Surpreendentemente, descobrimos que os pontos quânticos topologicamente triviais e não triviais têm propriedades de transporte semelhantes, um resultado em grande contraste com as suas versões semiinfinitas, como por exemplo uma fita. Mais especificamente, através de cálculos detalhados, que envolvem uma solução analítica do problema de autovalores dos pontos quânticos, demonstramos que pontos quânticos cilíndricos triviais e não-triviais possuem estados de borda semelhantes, isto é, estados quânticos helicoidais protegidos contra espalhamento elástico não magnético. Curiosamente, nossos pontos quânticos triviais exibem estados helicoidais geometricamente robustos, similarmente aos pontos quânticos topologicamente não-triviais, em uma ampla faixa de parâmetros do sistema, como por exemplo, o raio do ponto quântico. Nós também calculamos as correntes circulantes para os pontos quânticos topologicamente triviais e não-triviais e não encontramos diferenças substanciais entre elas. No entanto, notamos que os pontos quânticos cilíndricos feitos de materiais ordinários III-V ou II-VI (isto é, pontos quânticos não descritos pelo Hamiltoniano BHZ com confinamento) não apresentam estados helicoidais robustos. Consideramos ainda pontos quânticos triviais e não-triviais com quatro estados de borda e calculamos sua condutância entre dois terminais G através de uma abordagem padrão das funções de Green. Para os pontos quânticos triviais e não-triviais, encontramos que G mostra uma ressonância de pico duplo em 2e2/h como função do raio do ponto quantico R e da tensão Vg que controla os níveis de energia do ponto quântico. Por outro lado, tanto os pontos quânticos triviais como os não-triviais podem ter pares de Kramers localizados na borda (edge) e em todo seu volume (bulk) coexistindo em uma mesma janela de energia na região dos estados de valência. Nesse caso, G exibe uma ressonância de pico único em 2e2/h, já que os quatro níveis (dois estados de borda e dois estados de volume bulk) se tornam degenerados para alguns valores de parâmetros particulares R = Rc and Vg = Vgc, em pontos quânticos topologicamente triviais e não triviais. Nós também estendemos nossa investigação para os pontos quanticos de HgTe onde encontramos resultados similares.
|
Page generated in 0.1243 seconds