Spelling suggestions: "subject:"deprotection thermique."" "subject:"coprotection thermique.""
1 |
Modélisation des déperditions énergétiques dans une serre de verre chauffée par rayonnement infrarouge et influence d'un écran thermiqueLemay, Stéphane-P. 22 December 2020 (has links)
Le but de ce projet consiste à modéliser les pertes énergétiques d'une serre en considérant les flux radiatifs des sources d'énergie et l'utilisation d'un écran thermique. Le modèle devait permettre l'évaluation d'un système de chauffage radiant électrique et déterminer l'influence de l'écran thermique avec celui-ci. Le modèle simule les pertes énergétiques de la serre avec un système de chauffage radiant et à l'eau chaude, avec et sans écran thermique. Des mesures expérimentales ont permis de calibrer et de valider le modèle. Avec la même température de végétation, le système de chauffage radiant procure des économies d'énergie de -0,2 à 2,6% par rapport au système à l'eau chaude. L'écran thermique réduit la consommation énergétique de la serre de 25,2 à 32,4% avec le système radiant et de 24,0 à 31,2% avec celui à l'eau chaude. Les performances du système radiant ne permettent pas de le recommander pour chauffer une serre. Par contre, l'écran thermique est un équipement efficace pour réduire les pertes énergétiques d'une serre.
|
2 |
Dynamic modeling of energy consumption and yield in greenhouse horticulture : impact of energy efficiency measures, lighting systems, location, and climate changeTrépanier, Marie-Pier 17 June 2024 (has links)
L'agriculture sous serre est importante pour relever les défis mondiaux en matière de sécurité alimentaire et de durabilité, car elle permet de produire tout au long de l'année et d'obtenir des rendements nettement supérieurs à ceux de l'agriculture de plein champ. Toutefois, pour renforcer la durabilité environnementale et la viabilité économique de ces bâtiments à forte consommation d'énergie, il est essentiel d'améliorer leur efficacité énergétique. Pour optimiser les conditions de croissance des plantes tout en considérant la consommation d'énergie, il est nécessaire de gérer soigneusement le chauffage, l'humidité, le CO₂ et l'éclairage, car ils sont tous interconnectés. L'efficacité des différentes techniques, telles que les écrans thermiques et les systèmes de récupération de la chaleur, dépend de facteurs tels que le climat extérieur, les sources d'énergie et les mécanismes de contrôle. D'un point de vue énergétique, quelles sont les meilleures pratiques en matière d'éclairage et de mesures d'efficacité énergétique dans les serres, en mettant l'accent sur la durabilité ? La littérature actuelle manque de conseils pratiques de mise en œuvre, d'études comparatives et de considérations sur les variations climatiques régionales et les impacts futurs des changements climatiques. Cette recherche a analysé l'impact de différentes technologies d'éclairage et de mesures d'efficacité énergétique sur la consommation annuelle d'énergie à l'aide d'un modèle de simulation dynamique des serres. Les résultats ont montré que l'éclairage LED et les écrans thermiques sont les options les plus efficaces sur le plan énergétique, en particulier dans les climats nordiques. Les simulations des scénarios climatiques futurs indiquent des réductions potentielles de rendement en raison de chaleur estivale excessive. Les mesures d'adaptation, telles que les systèmes mécaniques de refroidissement et de déshumidification, sont prometteuses pour atténuer les effets des changements climatiques, mais elles augmentent également la consommation d'énergie. Cette recherche souligne l'importance des approches personnalisées de gestion de l'énergie pour des serres durables face à des conditions environnementales changeantes. Les résultats de ce travail sont utiles aux producteurs pour leur planification opérationnelle et stratégique, et aux décideurs politiques pour le développement de programmes de soutien à l'industrie. / Greenhouse agriculture is important for addressing global food security and sustainability challenges by enabling year-round production and significantly higher crop yields compared to field farming. However, to enhance the environmental sustainability and economic viability of these energy-intensive buildings, it is crucial to improve their energy efficiency. To optimize plant growth conditions while balancing energy consumption, it is necessary to carefully manage heating, humidity, CO₂, and lighting, as they are all interconnected. The effectiveness of various energy efficiency techniques, such as thermal screens and heat harvesting systems, depends on factors such as outdoor climate, energy sources, and control mechanisms. From an energy perspective, what are the best practices for lighting and energy efficiency measures in greenhouses with a focus on sustainability? The current literature often lacks practical implementation guidance, comparative studies, and considerations for regional climate variations and future climate change impacts. Additionally, operational costs and local environmental factors are frequently overlooked. This study analyzed the impact of different lighting technologies and energy efficiency measures on annual energy consumption using a comprehensive greenhouse dynamic simulation model. The results showed that LED lighting and thermal screens are the most energy-efficient options, especially in northern climates. Simulations of future climate scenarios indicate potential yield reductions due to excessive summer heat. Adaptive measures, such as mechanical cooling and dehumidification systems, show promise for mitigating climate change impacts but also increase energy consumption. This research emphasizes the importance of customized energy management approaches for sustainable greenhouse horticulture in the face of changing environmental conditions. The outcome of this work is useful to growers for their operational and strategic planning and for policymakers for the development of programs supporting the industry.
|
3 |
Contribution à l’étude de flambage des coques cylindriques minces raidies et non-raidies : Vers une optimisation des règles de dimensionnement / Contribution to the study of buckling of stiffened and non-stiffened cylindrical thin shells : Towards optimizing design rulesTran, Huu Viet 12 September 2018 (has links)
Ce travail de recherche répond aux besoins actuels et futurs dans le domaine de l’Aérospatial de faire évoluer les règles de dimensionnement au flambage des réservoirs structuraux de l’Etage Principal Cryogénique (EPC) des lanceurs. Ces réservoirs, composés de coques cylindriques, peuvent être associés à un faible raidissage en termes de masse ajoutée. L’objectif d’alléger le lanceur pour optimiser la charge utile, conduit au choix de coques constitutives de plus en plus minces, le risque de flambage sous diverses sollicitations est donc d’autant plus accru. Le dimensionnement au flambage de l’EPC est basé principalement sur la norme NASA SP8007 qui date de 1968, et qui semble trop conservative, notamment aux basses pressions. Précisons aussi, que l’EPC est équipé d’une couche de protection thermique (PT) qui n’est pas prise en compte dans le design au vue de sa très faible rigidité de membrane. La contribution de cette couche à la capacité de flambage de la coque est cependant un sujet ouvert. / This research work responds to the current and future requirements in Aerospatiale are to improve the design for buckling of the tanks of the Cryogenic Main Stage (EPC) of the launcher. These tanks are composed of cylindrical shells and can be associated with weak stiffening, which are becoming thinner and therefore more susceptible to a risk of buckling. The buckling design of the EPC based mainly on the NASA SP8007 standard, which is ac-cording to many specialists too preservative, especially under low pressure. Moreover, the EPC is equipped with a thermal protection layer (PT), which is extremely light and has an excellent thermal insulation property but very low mechanical properties. The contribution of this layer to the buckling capacity of a lightly pressurized thin cylindrical shell under var-ious solicitations, therefore, appears to be a major subject.
|
4 |
Modélisation du couplage conduction/rayonnement dans les systèmes de protection thermique soumis à de très hauts niveaux de températures / Coupled radiative/conductive heat transfer modeling in thermal protection systems at high temperatureLe Foll, Sébastien 11 September 2014 (has links)
Les travaux présentés dans cette thèse CIFRE financée par AIRBUS Defence & Space s’intègrent dans une problématique de développement de nouveaux Systèmes de Protection Thermique (TPS) pour l’entrée atmosphérique. Ils se focalisent sur l’étude du transfert radiatif dans la zone d’ablation du TPS et son couplage avec le transfert conductif au travers de la matrice fibreuse de faible densité. Pour réaliser cette étude, il a été nécessaire d’évaluer les propriétés thermiques de ces matériaux, notamment les propriétés radiatives qui, contrairement aux conductivités thermiques, demeurent mal connues. La première étape de cette étude a donc visé à caractériser les propriétés optiques et radiatives de certains matériaux fournis par AIRBUS Defence & Space et par le CREE Saint-Gobain. Pour réaliser ces caractérisations, nous avons développé une méthode originale d’identification des propriétés radiatives basée sur des mesures de l’émission propre. Les spectres d’émission à haute température, réalisés sur des échantillons en fibre de silice ou en feutre de carbone nécessaires à l’identification, sont obtenus sur un banc de spectrométrie FTIR développé lors de ces travaux. Les échantillons sont chauffés à haute température à l’aide d’un laser CO2 et un montage optique permet de choisir entre la mesure du flux émis par l’échantillon ou un corps noir servant à l’étalonnage du banc. L’identification des propriétés repose sur la modélisation des facteurs de distribution du rayonnement calculés à l’aide d’une méthode de lancé de rayons Monte Carlo utilisant la théorie de Mie pour un cylindre infini pour le calcul des propriétés radiatives. Les températures identifiées sont comparées aux températures mesurées par pyrométrie au point de Christiansen dans le cas de la silice et montrent un bon accord avec ces dernières. Enfin la dernière partie de ce document est consacrée au couplage conduction-rayonnement dans ce type de milieu. Les échantillons ayant une très forte extinction, le modèle utilisé repose sur la définition d’une conductivité équivalente de Rosseland pour traiter les transferts radiatifs volumiques et ainsi simuler les champs de température au sein des échantillons dans les conditions de chauffage utilisées lors de l’identification. Dans le cas de la silice, cependant, les températures prédites par le modèle utilisant la conductivité équivalente de Rosseland, sont nettement supérieures à celles obtenues par identification ou par pyrométrie au point de Christiansen. Le fait que la conductivité équivalente de Rosseland ne fasse pas la distinction entre une forte extinction due à la diffusion ou à l’absorption est probablement la cause de cette différence. / The work presented in this thesis has been financed by AIRBUS Defence and Space. It is part of the development strategy of new Thermal Protection Systems (TPS) for atmospheric reentry purposes. The aim is to study the radiative transfer in the ablation zone of the TPS as well as the coupling of the radiative and conductive heat transfer in the low density fibrous matrix. To this end, radiative properties of the materials have to be evaluated since they are not well known. The first step of this study is therefore to characterize the optical and radiative properties of sample provided by AIRBUS Defence and Space and the CREE Stain-Gobain laboratory. Thus, an original identification method based on radiative emission measurement was developed to obtain the radiative properties. The needed emission spectra are measured on silica or carbon samples at high temperature with an experimental setup based on Fourrier Transformed InfraRed spectrometry. The samples are heated using a CO2 laser. An optical setup allows us to measure emission spectra on the sample or a black body used to calibrate the experiment. The identification process is based on the modeling of the radiative distribution factor computed by a Monte Carlo ray-tracing method. It uses Mie theory for infinite cylinder to compute the radiative properties. Temperature are also identified and, for silica, compared to the one measured by a Christiansen pyrometry technique. The last part of this study focuses on the coupled radiative/conductive heat transfer modeling in low density fibrous media. Samples being greatly absorbing, we used the Rosseland equivalent conductivity to model the radiative transfer in volume and obtain the thermal response of the samples in the conditions of the experimental setup used for the identification. For silica, predicted temperatures are superior to the identified ones or those measured with the Christiansen pyrometry technique. This is probably because the Rosseland equivalent conductivity makes no difference between extinction due to absorption and extinction due to scattering.
|
Page generated in 0.0812 seconds