• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue behavior of corrosion notched weathering steel samples

Unknown Date (has links)
Weathering steel has been a primary construction material for bridges in the United States. Notches caused by corrosion are observed on the flange of steel I-beams. These notches reduce the cross section area of the structure and are threats to bridge safety. A606-04 Type 4 cold rolled weathering steel samples were studied in this thesis to understand the effect of notches that caused by corrosion. Weathering steel samples were in the shape of plates, which simulated flange of I-beams. The plate samples were notched across their surfaces by applying electrical current through an electrochemical circuit composed of an anode, a cathode and electrolyte. Sixteen samples were notched and cut into appropriate shape for fatigue testing. S-N (Stress-Number of cycles to failure) diagram established from fatigue data indicated that the fatigue strength decreased below AASHTO category B. Weibull analysis was also performed to understand the reliability distribution. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
2

Impedance-Based Wireless Sensor Network for Metal-Protective Coating Evaluation

Yu, Ronghua January 2011 (has links)
Research has focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, three coating panels are immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that this wireless sensor network is capable of evaluating the coating degradation.

Page generated in 0.1254 seconds