• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7367
  • 2504
  • 984
  • 835
  • 363
  • 357
  • 268
  • 149
  • 90
  • 90
  • 90
  • 90
  • 90
  • 90
  • 88
  • Tagged with
  • 16226
  • 1588
  • 1553
  • 1410
  • 1347
  • 1322
  • 1246
  • 1078
  • 1050
  • 1003
  • 978
  • 845
  • 823
  • 800
  • 775
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1001

Signaling factors related to atrophy and hypertrophy in denervated skeletal muscle

Fjällström, Ann-Kristin January 2014 (has links)
The human body consists of about 40 % skeletal muscles which control the body’s movement, ability to stand up, force generation, locomotion, heat production and are also the body’s protein reservoir. Muscle mass is controlled by the relationship between protein synthesis and protein degradation. Atrophy, a decrease in muscle mass, can be trigged by disuse, immobilization, inflammation and cancer. Hypertrophy, an increase in muscle mass, can occur after increased mechanical load, high usage and/or anabolic stimulation. The aim of this thesis was to investigate changes in expression and post translational modifications of some factors involved in the regulation of protein synthesis and protein degradation in 6-days denervated atrophic hind-limb muscles (anterior tibial and pooled gastrocnemius and soleus muscles) and in 6-days denervated hypertrophic hemidiaphragm muscle in mice. Protein expression and post translational modifications were studied semi-quantitatively using Western blots with whole muscle homogenates and separated nuclear and cytosolic fractions from both innervated and denervated muscles.  An increase in protein synthesis after denervation in both atrophic and hypertrophic muscles was suggested after studies of factors downstream of mTOR (paper I).  Other results suggest that FoxO1 and MuRF1 (paper II) participate in the tissue remodeling that occurs after denervation. A differential response of MK2 phosphorylation in denervated hypertrophic and atrophic muscles was confirmed (paper III). An increase in phosphorylation of the MK2 substrate Hsp 25 in all denervated muscles studied (paper III) indicates that other factors than MK2 are involved in regulating this phosphorylation. eIF4G phosphorylation at S1108 was investigated (paper IV) and a decrease was observed in atrophic muscle but an increase in hypertrophic muscle. The results in this thesis suggest that there are several factors that control protein degradation and protein synthesis in denervated atrophic and hypertrophic skeletal muscles. This is an intricate labyrinth with many different cell signaling factors, the function of which are still far from fully understood.
1002

Structural and Biophysical Characterization of Tumor Suppressor p53-interacting Proteins

Liao, Jack Chun-Chieh 10 January 2012 (has links)
The p53 protein is a critical tumor suppressor that is mutated in over half of all human cancers. It plays essential roles in maintaining genomic integrity by modulating the cellular response to various types of genotoxic stress. Associating with over 270 proteins to date, one of the mechanisms pivotal to p53’s multifaceted activities is protein-protein interactions. As to how most of these molecules bind to and affect p53 function remains unclear. Here we present a combined structural and biophysical approach to study three p53-interacting partners: BRCA1, IFI16 and p53 affinity reagent in an attempt to elucidate the basis of how these proteins recognize, bind to and alter p53’s biochemical functions. We have biophysically characterized the central region of BRCA1 and examined how it acts as a disordered scaffold to mediate association with p53 and other proteins. Having a putative role as a tumor suppressor, we have determined the crystal structures of the HIN-A and HIN-B domains of IFI16 and find that they interact with the C-terminus and DNA-binding core domain of p53, respectively, and enhance the DNA binding and transactivation activities of p53. Most cancer hot spot mutations of p53 are localized in the core domain and are thermally destabilized. Attaining molecules that stabilize the p53 fold has therefore been regarded as an attractive approach for cancer therapy. Lastly, using a phage-displayed library, evidence is presented to demonstrate a proof-of-principle for generating synthetic affinity reagents to potentially restore the function of tumor-derived p53 core domain mutants.
1003

Structural and Biophysical Characterization of Tumor Suppressor p53-interacting Proteins

Liao, Jack Chun-Chieh 10 January 2012 (has links)
The p53 protein is a critical tumor suppressor that is mutated in over half of all human cancers. It plays essential roles in maintaining genomic integrity by modulating the cellular response to various types of genotoxic stress. Associating with over 270 proteins to date, one of the mechanisms pivotal to p53’s multifaceted activities is protein-protein interactions. As to how most of these molecules bind to and affect p53 function remains unclear. Here we present a combined structural and biophysical approach to study three p53-interacting partners: BRCA1, IFI16 and p53 affinity reagent in an attempt to elucidate the basis of how these proteins recognize, bind to and alter p53’s biochemical functions. We have biophysically characterized the central region of BRCA1 and examined how it acts as a disordered scaffold to mediate association with p53 and other proteins. Having a putative role as a tumor suppressor, we have determined the crystal structures of the HIN-A and HIN-B domains of IFI16 and find that they interact with the C-terminus and DNA-binding core domain of p53, respectively, and enhance the DNA binding and transactivation activities of p53. Most cancer hot spot mutations of p53 are localized in the core domain and are thermally destabilized. Attaining molecules that stabilize the p53 fold has therefore been regarded as an attractive approach for cancer therapy. Lastly, using a phage-displayed library, evidence is presented to demonstrate a proof-of-principle for generating synthetic affinity reagents to potentially restore the function of tumor-derived p53 core domain mutants.
1004

Structural Basis for Misfolding at Disease Phenotypic Positions in CFTR

Mulvihill, Cory Michael 18 December 2012 (has links)
Misfolding of membrane proteins as a result of mutations that disrupt their functions in substrate transport across the membrane or signal transduction is the cause of many significant human diseases. Yet, we still have a limited understanding of the direct consequences of these mutations on folding and function - a necessary step toward the rational design of corrective therapeutics. This thesis addresses the gap in understanding the residue-specific implications for folding through a series of experiments that utilize the cystic fibrosis transmembrane conductance regulator (CFTR) as a model in various contexts. We first examined the thermodynamic implications of mutations in the soluble nucleotide binding domain 1 (NBD1) of CFTR. We found that mutations can have a significant effect on thermodynamic stability that is masked in non-physiological conditions. Our studies were then focussed on a membrane-embedded hairpin CFTR fragment comprised of transmembrane segments 3 (TM3) and 4 (TM4) to evaluate the direct effects of mutations on folding in a systematic manner. It was found that the translocon-mediated membrane insertion of helices closely parallels a basic hydrophobic-aqueous partitioning event. This study was then extended to determine residue-specific effects on helix-helix association. We found that this process is not solely dependent on hydropathy, but there is a context dependence of these results with regard to residue position within the helix. Overall, these findings constitute a key step in relating mutation-derived effects on membrane protein folding to the underlying basis of human disease such as cystic fibrosis.
1005

Effect of Protein Supplement Sources on Intake and Digestion of Steers Fed Low-quality Forage

Stefan, Courtney Chanel 02 October 2013 (has links)
Potential protein supplements to grazing cattle were evaluated in two projects. In the first project, Karanja seedcake samples were prepared and ruminally incubated using the in situ method to measure nutrient disappearance in cattle consuming low-quality forage. Organic matter and CP were fractionated by degradability into A, B, and C fractions. Organic matter fraction A degradability ranged from 59.6 to 89% (P < 0.05) for all the karanja seedcake samples. Fraction A of CP ranged from 61.6 to 96.2% degradability for all the samples (P < 0.05). Karanja seedcake samples were observed to contain highly degradable nutrients and our results indicate karanja seedcake may possibly be utilized in grazing cattle protein supplements, consequently increasing economic sustainability of biofuel production. In the second experiment, four non-protein nitrogen supplements were ruminally infused in steers consuming low-quality forage. Supplements included a 40% CP mineral mix (40MM), 60% CP mineral mix (60MM), 25% CP liquid (25L), or 35% CP liquid (35L). Protein provision stimulated forage OM intake and total OM intake for both liquid supplements. Forage OM intake tended to be greater for the liquid supplements; 25L (P = 0.06) and 35L (P = 0.08), then control. Total OM intake significantly increased (P < 0.01) for both liquid supplements, when compared to the control treatment. Total digestible OM intake was greater (P < 0.01) for 25L (3.4 kg/d) and 35L (3.36 kg/d) than control (2.94 kg/d). Forage and total OM intake were not significantly affected by 40MM or 60MM treatments. Total tract digestions (OM and NDF) were not observed to be significantly different (P ≥ 0.11) between supplements and control. Ruminal ammonia was greater (P < 0.01) for all supplements then control and total ruminal VFA concentrations increased from 84.7 to 98.7 mM for control versus supplemented. Supplementation with liquids had a significant effect on intake. Our results indicate of the four supplements, liquid supplements improved the utilization of low-quality forage by cattle, thus improving nutrient stewardship.
1006

Protein-protein interactions in turnip mosaic potyvirus replication complex

Thivierge, Karine January 2003 (has links)
Interactions between plant and virus proteins play pivotal roles in many processes during the viral infection cycle. Analysis of protein-protein interactions is crucial for understanding virus and host protein functions and the molecular mechanisms underlying viral infection. Several interactions between virus-encoded proteins have been reported. However, few interactions between viral and plant proteins have been identified so far. To examine interactions between Turnip mosaic potyvirus (TuMV) proteins and plant proteins, recombinant proteins were produced and used in ELISA-type assays and in in vitro co-immunoprecipitation experiments. An interaction between TuMV P1 proteinase and wheat poly(A)-binding protein (PABP) was identified. An interaction between P1 protein and the plant Arabidopsis thaliana eukaryotic initiation factor (iso)4E [eIF(iso)4E] was also found. Finally, potential interactions between both TuMV CI and P1 proteins and between TuMV CI protein and eIF(iso)4E were identified.
1007

Regulation and functional analysis of a geminiviral DNA β satellite encoded gene.

Eini Gandomani, Omid January 2008 (has links)
Geminiviruses (family Geminiviridae) are characterized structurally by twinned (geminate) morphology of virions (ca. 18-30 nm) and genetically by a genome comprising one or two small circular single stranded DNA (ssDNA) molecules and they are responsible for major crop losses worldwide. The genus Begomovirus (type member Bean golden yellow mosaic virus) is the largest genus of the family Geminiviridae. The members of this genus have either monopartite or bipartite genomes. They are transmitted by whiteflies and infect only dicotyledonous plants. DNA β molecules are symptom modulating single-stranded sat-DNA molecules which are associated with certain monopartite begomoviruses. These molecules are around half the size (approximately 1350 nt in length) of their helper viruses and rely on the helper begomovirus for movement in plant tissues, replication and plant-to-plant transmission by the whitefly (Bemisia tabaci). They contribute to production of symptoms and enhance helper virus accumulation in certain hosts. DNA β molecules encode a single gene, called βC1, on the complementary strand which is important for pathogenicity and suppression of post transcriptional gene silencing. In this study the regulation of βC1 gene expression, a host factor interacting with βC1 and its role in the pathogenicity of DNA β are described. Transient expression studies using Nicotiana tabacum plants and GUS as a reporter gene, identified the sequences important for transcription of βC1 from DNA β associated with Cotton leaf curl Multan virus (CLCuMV). A 68 nt fragment (between -139 to -207), which contains a G-box motif was sufficient for DNA β promoter activity. Deletion of this region also led to loss of DNA β replication capacity. Mutation of the G-box, located at 143 nucleotides upstream of the βC1 start codon, resulted in a two to three times reduction in the DNA β promoter activity. This motif was shown to bind specifically to the nuclear factors isolated from tobacco leaf tissues. Histochemical staining of transgenic tobacco plants expressing the gus gene driven by full length DNA β promoter showed phloem specific localisation patterns. It was concluded that a G-box motif is required for binding of host nuclear factors and is necessary for efficient expression of this phloem specific βC1 gene. An ubiquitin-conjugating enzyme, called SlUBC, was retrieved from screening of a tomato cDNA library, using βC1 encoded by DNA β associated with CLCuMV as the bait. The SlUBC was shown to complement yeast deficient in the ubiquitin-conjugating enzyme. It is thought that this enzyme is a key factor in the ubiquitin proteasome pathway, which plays a central role in many eukaryotic cellular processes. The authenticity and specificity of this interaction was confirmed both in vivo, using a bimolecular fluorescence complementation assay, and in vitro. Domain mapping of βC1 showed that a myristoylation-like motif is required for the interaction with SlUBC in the yeast system and induction of DNA β specific symptoms in host plants. Western blot analysis showed that expression of βC1 in transgenic tobacco plants decreased the level of poly-ubiquitinated proteins as compared with wild type plants. However, the level of expression of homologous SlUBC remained stable in these transgenic plants. These results indicated that interaction of βC1 with the SlUBC is required for DNA β specific symptom induction possibly through down-regulation of the host ubiquitin proteasome pathway. Using GFP transgenic N. benthamiana plants, the βC1 encoded by DNA β associated with CLCuMV showed suppression of post transcriptional gene silencing. This protein inhibited both local and systemic silencing. However, the low level of GFP fluorescence and also the results of RNA analysis in patch co-infiltration assay indicated that βC1 is a weak suppressor of local RNA silencing as compared with P19 protein from Tomato bushy stunt virus. A three-way grafting assay and separate patch infiltration assays showed that βC1 interferes with the activity of GFP silencing signal. Mutation of Gly103 in βC1 which was shown to be required for interaction with SlUBC and induction of DNA β specific symptoms in host plants, had no effect on the silencing suppression activity of βC1 protein. This work has provided a new insight into the importance of a G-box motif in expression of βC1 gene of DNA β and also for binding to the host nuclear proteins. In addition, interaction with a host factor, SlUBC, has been shown to be required for induction of DNA β specific symptoms in experimental plants using ToLCV as a helper virus. However, this interaction was not required for silencing suppression activity of βC1. The results of this study can be adapted to determine the mode of pathogenesis and regulation of expression of βC1 in cotton leaf curl disease. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337164 / Thesis (Ph.D.) - University of Adelaide, School of Agriculture, Food and Wine, 2008
1008

Protein C and protein S levels in patients with thrombosis /

Rumpff, David John. Unknown Date (has links)
Thesis (MAppSc (Medical Laboratory Science)) --University of South Australia, 1992
1009

MOLECULAR CHARACTERISATION OF THE ALPHA-KAFIRIN MULTIGENE FAMILY FOR THE GENETIC IMPROVEMENT OF SORGHUM GRAIN QUALITY

Pratibala Pandit Unknown Date (has links)
Sorghum is a valuable grain crop and a principle source of food of particular importance in human and animal nutrition in the semi-arid regions of Africa and Asia. Despite its value, sorghum grain quality is a major limitation to its productivity and profitability. Sorghum grain is usually discounted as feed grain when compared to wheat and barley, predominantly because of its poor digestibility. The sorghum endosperm is composed of a complex starch protein matrix, whereby the starch is physically bound within the storage proteins, the kafirins. The kafirins are synthesised on the membrane bound polysomes and have a signal peptide which targets them to the lumen of the endoplasmic reticulum. Growth of protein bodies occur as - kafirins fill in the interior with  and γ kafirins occupy the periphery. Despite the -kafirins being more digestible and composing of 60- 80% of the kafirins, they are not easily accessible due to  and γ kafirins which have a high content of intermolecular disulphide bonds (S-S), rendering them highly resistant to proteases. Alteration of the structure of the protein bodies and change of the location of the-kafirins could result in a higher digestibility of sorghum proteins. This could be achieved by upregulating or downregulating the -kafirins. The improvement of grain quality, both in increased protein and starch digestibility would substantially enhance the digestibility of sorghum as animal feed as well as for human consumption. Various techniques have been utilised to classify the kafirins according to their mobility on SDS PAGE electrophoresis, Reverse Phase High Performance Liquid Chromatography (RP-HPLC), Free Zone Capillary Electrophoresis (FZCE) and Lab on Chip. Until recently the characterisation and classification of the kafirins generally have relied on the characterisation of zeins from maize. Zeins have about 70% homology to the kafirins both at the nucleotide and amino acid level. Based on the high similarity of the -kafirins to the -zeins, the - kafirins have been classified as 19 and 22 kDa. Despite their 70% homology the migration of the - kafirins on SDS PAGE is quite different to that of the zeins. Hence, I propose a new classification of the -kafirins as 23 kDa and 25 kDa based on their mobility on SDS PAGE Characterisation and cloning of the 23 and 25 kDa genes was performed using QL41 the Queensland inbred line of sorghum. Ten positive clones were isolated from a cDNA library for the 25 kDa and two clones for the 23 kDa -kafirins. The isolated clones of the 25 kDa -kafirins showed 98-99% homology with each other and also with the GenBank sequences. The major finding was the characterisation of the 23 kDa -kafirins. The two clones obtained showed 100% homology to each other as well as to the published sequences on the GenBank, and were full-length sequences. Also a partial sequence was obtained that lacked the signal peptide and was different to the other two clones. Whilst characterising the 23 kDa a second group of the 25 kDa -kafirins was identified from the genomic DNA, of all the three genotypes (QL41, 296B and QL12), which was unique from the previously isolated clones. This group of -kafirins was not among the cluster but was 5’ upstream of the cluster. This group had a higher content of the glutamine compared with the other 25 kDa group. The expression level was studied to show how each gene family contributed to the level of - kafirins. QL41 and 296B were used for this study. From the studies it was shown that the 23 kDa - kafirins genes were 20% more expressed than the 25 kDa. An attempt to identify suitable markers for the -kafirins was investigated using RFLP and SSR analysis. Thirty-two different genotypes were utilised for this study. The observed variation indicated by cluster analysis (4-38%) clearly showed variation of the -kafirins in genotype and within the kafirin genes as elucidated by the sequences in Chapter 4. Markers able to identify this variation could help in the selection of highly digestible mutants. Hence, there is potential for sorghum grain improvement using marker-assisted breeding. The need to identify a tissue specific promoter was essential, especially for a strong promoter that could drive expression in the endosperm of the monocots. A vector construct consisting of the - kafirin promoter driving the GUS reporter genes was used for transient expression from QL41. This was assessed in the sorghum and barley calli, sorghum endosperm and leaves and corn endosperm. Tissue specific expression as well as higher levels of transient expression were seen using the - kafirin promoter, compared with the ubiquitin promoter. Preliminary experiments have illustrated the potential use of a gene silencing mechanism that could enhance the digestibility of sorghum grain. The 25 kDa -kafirin gene was used as the target for gene silencing using the mechanism of iRNA. Transformation constructs were developed using the throughput vector pSTARGATE in an effort to silence the 25 kDa -kafirins. The characterisation of the -kafirins has provided valuable information for future sorghum improvement research.
1010

Regulation and functional analysis of a geminiviral DNA β satellite encoded gene.

Eini Gandomani, Omid January 2008 (has links)
Geminiviruses (family Geminiviridae) are characterized structurally by twinned (geminate) morphology of virions (ca. 18-30 nm) and genetically by a genome comprising one or two small circular single stranded DNA (ssDNA) molecules and they are responsible for major crop losses worldwide. The genus Begomovirus (type member Bean golden yellow mosaic virus) is the largest genus of the family Geminiviridae. The members of this genus have either monopartite or bipartite genomes. They are transmitted by whiteflies and infect only dicotyledonous plants. DNA β molecules are symptom modulating single-stranded sat-DNA molecules which are associated with certain monopartite begomoviruses. These molecules are around half the size (approximately 1350 nt in length) of their helper viruses and rely on the helper begomovirus for movement in plant tissues, replication and plant-to-plant transmission by the whitefly (Bemisia tabaci). They contribute to production of symptoms and enhance helper virus accumulation in certain hosts. DNA β molecules encode a single gene, called βC1, on the complementary strand which is important for pathogenicity and suppression of post transcriptional gene silencing. In this study the regulation of βC1 gene expression, a host factor interacting with βC1 and its role in the pathogenicity of DNA β are described. Transient expression studies using Nicotiana tabacum plants and GUS as a reporter gene, identified the sequences important for transcription of βC1 from DNA β associated with Cotton leaf curl Multan virus (CLCuMV). A 68 nt fragment (between -139 to -207), which contains a G-box motif was sufficient for DNA β promoter activity. Deletion of this region also led to loss of DNA β replication capacity. Mutation of the G-box, located at 143 nucleotides upstream of the βC1 start codon, resulted in a two to three times reduction in the DNA β promoter activity. This motif was shown to bind specifically to the nuclear factors isolated from tobacco leaf tissues. Histochemical staining of transgenic tobacco plants expressing the gus gene driven by full length DNA β promoter showed phloem specific localisation patterns. It was concluded that a G-box motif is required for binding of host nuclear factors and is necessary for efficient expression of this phloem specific βC1 gene. An ubiquitin-conjugating enzyme, called SlUBC, was retrieved from screening of a tomato cDNA library, using βC1 encoded by DNA β associated with CLCuMV as the bait. The SlUBC was shown to complement yeast deficient in the ubiquitin-conjugating enzyme. It is thought that this enzyme is a key factor in the ubiquitin proteasome pathway, which plays a central role in many eukaryotic cellular processes. The authenticity and specificity of this interaction was confirmed both in vivo, using a bimolecular fluorescence complementation assay, and in vitro. Domain mapping of βC1 showed that a myristoylation-like motif is required for the interaction with SlUBC in the yeast system and induction of DNA β specific symptoms in host plants. Western blot analysis showed that expression of βC1 in transgenic tobacco plants decreased the level of poly-ubiquitinated proteins as compared with wild type plants. However, the level of expression of homologous SlUBC remained stable in these transgenic plants. These results indicated that interaction of βC1 with the SlUBC is required for DNA β specific symptom induction possibly through down-regulation of the host ubiquitin proteasome pathway. Using GFP transgenic N. benthamiana plants, the βC1 encoded by DNA β associated with CLCuMV showed suppression of post transcriptional gene silencing. This protein inhibited both local and systemic silencing. However, the low level of GFP fluorescence and also the results of RNA analysis in patch co-infiltration assay indicated that βC1 is a weak suppressor of local RNA silencing as compared with P19 protein from Tomato bushy stunt virus. A three-way grafting assay and separate patch infiltration assays showed that βC1 interferes with the activity of GFP silencing signal. Mutation of Gly103 in βC1 which was shown to be required for interaction with SlUBC and induction of DNA β specific symptoms in host plants, had no effect on the silencing suppression activity of βC1 protein. This work has provided a new insight into the importance of a G-box motif in expression of βC1 gene of DNA β and also for binding to the host nuclear proteins. In addition, interaction with a host factor, SlUBC, has been shown to be required for induction of DNA β specific symptoms in experimental plants using ToLCV as a helper virus. However, this interaction was not required for silencing suppression activity of βC1. The results of this study can be adapted to determine the mode of pathogenesis and regulation of expression of βC1 in cotton leaf curl disease. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337164 / Thesis (Ph.D.) - University of Adelaide, School of Agriculture, Food and Wine, 2008

Page generated in 0.046 seconds