Spelling suggestions: "subject:"1protein E"" "subject:"2protein E""
991 |
Multi-Regional Analysis of Contact Maps for Protein Structure PredictionAhmed, Hazem Radwan A. 24 April 2009 (has links)
1D protein sequences, 2D contact maps and 3D structures are three different
representational levels of detail for proteins. Predicting protein 3D
structures from their 1D sequences remains one of the complex challenges of
bioinformatics. The "Divide and Conquer" principle is applied in our
research to handle this challenge, by dividing it into two separate yet
dependent subproblems, using a Case-Based Reasoning (CBR) approach. Firstly,
2D contact maps are predicted from their 1D protein sequences; secondly, 3D
protein structures are then predicted from their predicted 2D contact maps.
We focus on the problem of identifying common substructural patterns of
protein contact maps, which could potentially be used as building blocks for
a bottom-up approach for protein structure prediction. We further
demonstrate how to improve identifying these patterns by combining both
protein sequence and structural information. We assess the consistency and
the efficiency of identifying common substructural patterns by conducting
statistical analyses on several subsets of the experimental results with
different sequence and structural information. / Thesis (Master, Computing) -- Queen's University, 2009-04-23 22:01:04.528
|
992 |
Using Small Molecules to Inhibit an E2A-PBX1:CBP Interaction Involved in Acute Lymphoblastic LeukemiaPurvis, Amelia 03 September 2009 (has links)
E2A-PBX1 is expressed as a consequence of a recurring chromosomal translocation seen in 5% of acute lymphoblastic leukemia cases. We recently reported that substitution of a leucine residue (L20A) within the N-terminal transcriptional activation domain (AD1) of E2A-PBX1 markedly impairs binding to the KIX domain of CBP/p300 and, importantly, leukemia induction in a mouse bone marrow transplantation model. Since both the protein-protein interaction and consequent leukemogenesis rely on a focal contact point and might therefore be susceptible to antagonism by small molecules, we devised a cell-free assay based on fluorescence anisotropy (FA) to detect binding of a fluorescently labeled peptide derived from AD1 of E2A-PBX1 (FITC-E2A) with recombinantly expressed KIX domain. The optimized FA assay reveals a dissociation constant of 2 µM for the wild-type interaction and correctly detects disruption of the complex by naphthol AS-E phosphate, a compound previously shown to antagonize KIX binding. The optimized FA assay was used to screen the Prestwick, Spectrum and Chembridge libraries containing 12400 compounds in total. Of the initial 43 positive hits from the libraries, 10 caused a reproducible decrease in FA. Since intrinsic small molecule fluorescence can produce false positive results in the FA-based screen, intrinsically fluorescent compounds were excluded from further analysis unless they could be shown to bind to KIX. Two hits, L1 and C2, were intrinsically fluorescent but demonstrated KIX interactions and one hit, P9, was not intrinsically fluorescent. These three compounds were tested for their ability to inhibit binding of a larger portion of E2A (residues 1 to 483) to full length CBP in a pull down assay with only compound P9 demonstrating efficacy. Further characterization of P9 by NMR showed no binding to KIX, however evaluation by FA showed binding to FITC-E2A with a 20 µM affinity. A cell-based cytotoxicity assay demonstrated that compound P9 was slightly more toxic on leukemic cells that express E2A-PBX1, compared to leukemic cells lacking E2A-PBX1 expression. Mammalian two-hybrid analysis did not provide details of the effects of P9 on the E2A:KIX interaction. We expect the identification of a novel compound, P9, capable of disrupting the oncogenic E2A-PBX1:CBP interaction, to guide the development of effective, less toxic leukemia drugs and provide new tools for elucidating the molecular mechanisms of leukemia induction by E2A-PBX1. / Thesis (Master, Pathology & Molecular Medicine) -- Queen's University, 2009-08-31 11:13:19.517
|
993 |
Antifreeze Proteins: Activity Comparisons and De Novo Design of an Ice-Binding ProteinYu, Sally Oi Wah 01 February 2010 (has links)
Antifreeze proteins (AFPs) help cold-adapted organisms survive below 0 ◦C by binding to and inhibiting the growth of ice crystals. In this way, AFPs depress the freezing point of aqueous fluids below the melting point of ice (thermal hysteresis; TH). They also have the ability to inhibit ice recrystallization in the frozen state (ice recrystallization inhibition; IRI). Some AFPs show an order of magnitude higher TH activity than others, and are termed ‘hyperactive’. One of the objectives of this thesis was to see if IRI activities of the hyperactive AFPs are also an order of magnitude higher than the moderately active AFPs. Using a capillary-based assay for IRI, the activities of three hyperactive and three moderately active AFPs were determined. There was no apparent correlation between hyperactivity in TH and high IRI activity. However, mutations of residues on the ice-binding face (IBF) of both types of AFP reduced IRI and TH activities to a similar extent. In this way, the use of IBF mutant AFPs showed that the IBF responsible for an AFP’s TH activity is also responsible for its IRI activity.
Analysis of the diverse AFP structures solved to date indicate that their IBFs are relatively flat, occupy a significant proportion of the protein’s surface area and are more hydrophobic than other surfaces of the protein. The IBFs also often have repeating sequence motifs and tend to be rich in alanine and/or, threonine. The de novo design of an ice-binding protein was undertaken using these features to verify the underlying physicochemical requirements necessary for a protein’s interaction with ice. Using site-directed mutagenesis, a total of sixteen threonine substitutions were made on one of the four faces of a cyanobacterial protein with no endogenous TH activity. The inclusion of eight paired threonines on one face of this quadrilateral helix gave the engineered protein low levels of TH activity, but at the cost of destabilizing the structure to some extent. The results of this study have validated some of the properties needed for the ice-binding activity of AFPs. / Thesis (Master, Biochemistry) -- Queen's University, 2010-01-29 17:37:24.322
|
994 |
Structural and functional characterization of E2A:KIX interactions in leukemiaDenis, Christopher 15 September 2012 (has links)
The E2A proteins are transcription factors critical for B-lymphopoiesis. A chromosomal translocation involving the E2A gene promotes acute lymphoblastic leukemia (ALL) through expression of the oncoprotein E2A-PBX1. Two activation domains of E2A-PBX1, AD1 and AD2, have been implicated in transcription mediated by recruitment of the transcriptional co-activator CBP/p300. A motif has been identified within AD1 that is important for recruiting CBP/p300, known as PCET. This recruitment requires an interaction between the activation domains of E2A-PBX1 and the KIX domain of CBP/p300. The KIX domain recognizes a generic ΦXXΦΦ sequence (Φ corresponds to a hydrophobic residue) found in the activation domains of numerous transcription factors. Mutation of leucine 20 in PCET has been shown to abrogate ex vivo immortalization of murine bone marrow and oncogenesis in a murine bone marrow transplantation model. A similar sequence is also found in AD2 and is implicated in E2A transcriptional activity and recruitment of CBP/p300. The structural details of these interactions remain largely unknown.
NMR spectroscopy was used to determine the solution structure of the PCET:KIX complex, and the functional consequences of the Leu20Ala mutation were structurally rationalized. Other PCET mutations informed by this structure were tested and correlations were found between in vitro binding affinities and both transcriptional activation and immortalization. The binding site of the ΦXXΦΦ-containing E2A AD2 peptide was mapped to the same site on the KIX domain used by the PCET motif. A model of this complex was generated and mutations were tested using a similar approach as was used for PCET. E2A AD2 binds the KIX domain with lower affinity than the PCET motif and is not required for immortalizing bone marrow. A mutation that increases the affinity of E2A AD2 for the KIX domain to levels approaching that seen for the PCET:KIX interaction restores transcriptional activation and immortalization, demonstrating that immortalization by E2A-PBX1 is an affinity dependent process involving the KIX domain of CBP/p300. These studies indicate that the activation domains of E2A-PBX1 serve to support the in vivo function of the oncoprotein and that the PCET:KIX complex is a potential target for novel therapeutics in E2A-PBX1+ leukemia. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2012-09-13 13:30:48.848
|
995 |
In-silico characterization and prediction of protein-small ligand interactionsChen, Ke Unknown Date
No description available.
|
996 |
Functional analysis on the interactions of the human immunodeficiency virus type 1 integrase with its cofactors that regulate viral replicationZheng, Yingfeng 03 1900 (has links)
Like all viruses, the replication of HIV-1 relies heavily on host proteins due to its limited genome products. HIV-1 integrase (IN) catalyzes the integration of viral DNA into host genome and also impacts other steps of viral replication cycle, all of which are assisted by various cellular proteins. Among them, LEDGF/p75 acts as the IN-to-chromatin tethering factor. However, whether other cellular cofactors also participate in this process still remains elusive. To gain insight into the mechanism of action of HIV-1 IN during viral integration, we used a previously described IN/yeast lethality system and our results revealed that the HIV-1 IN-induced yeast lethality absolutely required its chromatin binding ability. Since there is no yeast homolog of LEDGF/p75, it raises the possibility that IN may recruit other cellular cofactors for its chromatin targeting. Consistently, further analysis in mammalian cells indicated that HIV-1 IN was able to mediate chromatin binding independent of IN-LEDGF/p75 interaction and that HIV-1 fitness relied more on chromatin binding than LEDGF/p75 binding of IN. These data greatly enrich our current knowledge on the dynamic interplay within the ternary complex IN/LEDGF/chromatin.
HIV-1 exploits multiple cellular cofactors not only to facilitate viral replication, but also to evade the host defense system in favor of the virus. IN is known to be an unstable protein, degraded by the host ubiquitin-proteasome pathway. To investigate how IN avoids the host degradation machinery in the context of viral infection, we showed that IN interacted with host protein Ku70 and protected itself from the Lys48-linked polyubiquitination proteasomal pathway. More importantly, Ku70 was shown to be incorporated into the progeny virus in an IN-dependent manner, and both cell- and virus- associated Ku70 were essential for HIV-1 replication. Finally, the data demonstrated that the interactions between HIV-1 IN and host cofactors can be regulated through its SUMO-interacting motifs (SIMs). Three putative SIMs (72VILV75; 200IVDI203 and 257IKII260) in IN were examined and shown to be essential for IN-LEDGF/p75 but not IN-Ku70 interaction.
In summary, this study advances our knowledge of the interaction network between IN and its cofactors, which would have important implications for the design of anti-HIV drugs.
|
997 |
SUPERNATANT PROTEIN FACTOR: INSIGHTS INTO ITS REGULATION AND ABILITY TO STIMULATE CHOLESTEROL SYNTHESIS IN VITRO AND IN CELL CULTUREMokashi, Vishwesh 01 January 2004 (has links)
Supernatant protein factor (SPF) is a 46-kDa cytosolic protein that stimulates squalene monooxygenase, which catalyses the second committed step in cholesterol biosynthesis. The mechanism by which SPF stimulates this enzyme is not understood and the goal of these studies was to see if SPF affected cholesterol synthesis in cultured cells. Rat supernatant protein factor-like protein (SPF2) shares 77% sequence identity with human SPF. In my studies SPF2 also stimulated squalene monooxygenase in vitro and incubation of SPF2 with protein kinase A (PKA) and C increased its activity by about 2-fold, as shown earlier with SPF. GTP and GDP prevented the stimulation of squalene monooxygenase by SPF2, suggesting that binding of these nucleotides inhibits SPF2. This inhibition could be prevented by the addition of -tocopherol, although -tocopherol alone had no effect on SPF2 activity in vitro. Expression of human SPF in hepatoma cells, which lack expression of endogenous SPF, increased cholesterol synthesis by 2-fold and addition of dibuytrylcAMP, a PKA activator, to these cells yielded an additional 62% increase whereas addition of a PKA inhibitor completely blocked the ability of SPF to stimulate cholesterol synthesis. To further confirm a role for phosphorylation in the regulation of SPF, substitution of alanine for serine-289 (a putative PKA recognition site) reduced the PKA-mediated activation of SPF in vitro by 50%, as measured with microsomal squalene monooxygenase and completely blocked the ability of SPF to stimulate cholesterol synthesis in hepatoma cells. In further structure-function studies, deletion of the carboxy-terminal Golgi-dynamics domain greatly increased the ability of SPF to stimulate squalene monooxygenase in microsomes, but, paradoxically prevented SPF from stimulating cholesterol synthesis in cell culture. Addition of brefeldin A, which disrupts Golgi formation, also abolished the ability of SPF to stimulate cholesterol synthesis, supporting a role for the Golgi in SPF function. Since squalene monooxygenase is not thought to be rate-limiting with regard to cholesterol synthesis, the possibility that SPF might stimulate other enzymes in the cholesterol biosynthetic pathway was investigated. The substitution of 14Cmevalonate for 14C-acetate completely blocked an SPF-induced 1.5-fold increase in squalene synthesis, suggesting that SPF stimulated mevalonate synthesis at HMGCoA reductase. 2,3-Oxidosqualene synthesis from 14C-mevalonate remained elevated (1.3-fold) with mevalonate demonstrating that SPF also stimulated squalene monooxygenase in hepatoma cells. SPF did not increase HMG-CoA reductase or squalene monooxygenase enzyme levels in cells, indicating that SPF directly activated these enzymes. Indeed, addition of purified recombinant SPF to rat liver microsomes stimulated HMG-CoA reductase by about 1.5-fold. These results reveal that SPF directly stimulates HMG-CoA reductase, the rate-limiting step of the cholesterol biosynthetic pathway, as well as squalene monooxygenase, and, coupled with the ability of PKA-mediated phosphorylation to regulate SPF activity, suggest a new means by which cholesterol synthesis can be rapidly modulated in response to hormonal and environmental signals.
|
998 |
Thermodynamics, kinetics and inclusion body formation of a de novo designed protein ThreefoilMa, Su Martha January 2014 (has links)
Threefoil is a small engineered protein of 141 amino acids which is a member of the beta-trefoil superfamily, with three-fold symmetry and high thermal and kinetic stability. Its primary sequence was designed based on a predicted beta-trefoil glycosidase from the halophilic Archaeon Haloarcula marismortui. Threefoil predominantly forms inclusion bodies when over-expressed in Escherichia coli at 37??C, with little to no protein soluble in the cytoplasm. Nevertheless, Threefoil is capable of adopting a native beta-trefoil structure when refolded from solubilized inclusion bodies. The focus of this thesis is on characterization of the folding and stability of Threefoil through thermodynamic and kinetic experiments for wild-type Threefoil, in addition to sugar- and metal-binding studies and characterization of Threefoil inclusion bodies. Various Threefoil mutants, designed to increase protein stability, are also characterized to probe the origins of, as well as to give insight into, the mechanism of inclusion body formation. The thermodynamic and kinetic stability of wild-type Threefoil was studied using spectral probes, mainly fluorescence, circular dichroism (CD) and dynamic light scattering (DLS). The major observed spectral changes in kinetic and thermodynamic experiments can be fit to a 2-state transition between the folded state and a denatured state containing extensive residual secondary structure. At high protein concentrations, the folding of wild-type Threefoil is complicated by protein misfolding and aggregation. As Threefoil is remarkably resistant to denaturation even at high concentrations of urea and guanidine hydrochloride (GuHCl), studies were also conducted in guanidine isothiocyanate (GuSCN), which is a much stronger denaturant than urea and GuHCl. Remarkably, the time that is required for Threefoil samples to reach equilibrium in renaturation curves is approximately 100 days, while equilibrium by denaturation in the stronger denaturant, GuSCN, requires more than two years. The expression levels of Threefoil mutants A62V, Q78I, D85P and D93P were also studied. None of the four mutants studied exhibited any pronounced increase in solubility compared to wild-type when expressed in E. coli.
|
999 |
Functional analysis on the interactions of the human immunodeficiency virus type 1 integrase with its cofactors that regulate viral replicationZheng, Yingfeng 03 1900 (has links)
Like all viruses, the replication of HIV-1 relies heavily on host proteins due to its limited genome products. HIV-1 integrase (IN) catalyzes the integration of viral DNA into host genome and also impacts other steps of viral replication cycle, all of which are assisted by various cellular proteins. Among them, LEDGF/p75 acts as the IN-to-chromatin tethering factor. However, whether other cellular cofactors also participate in this process still remains elusive. To gain insight into the mechanism of action of HIV-1 IN during viral integration, we used a previously described IN/yeast lethality system and our results revealed that the HIV-1 IN-induced yeast lethality absolutely required its chromatin binding ability. Since there is no yeast homolog of LEDGF/p75, it raises the possibility that IN may recruit other cellular cofactors for its chromatin targeting. Consistently, further analysis in mammalian cells indicated that HIV-1 IN was able to mediate chromatin binding independent of IN-LEDGF/p75 interaction and that HIV-1 fitness relied more on chromatin binding than LEDGF/p75 binding of IN. These data greatly enrich our current knowledge on the dynamic interplay within the ternary complex IN/LEDGF/chromatin.
HIV-1 exploits multiple cellular cofactors not only to facilitate viral replication, but also to evade the host defense system in favor of the virus. IN is known to be an unstable protein, degraded by the host ubiquitin-proteasome pathway. To investigate how IN avoids the host degradation machinery in the context of viral infection, we showed that IN interacted with host protein Ku70 and protected itself from the Lys48-linked polyubiquitination proteasomal pathway. More importantly, Ku70 was shown to be incorporated into the progeny virus in an IN-dependent manner, and both cell- and virus- associated Ku70 were essential for HIV-1 replication. Finally, the data demonstrated that the interactions between HIV-1 IN and host cofactors can be regulated through its SUMO-interacting motifs (SIMs). Three putative SIMs (72VILV75; 200IVDI203 and 257IKII260) in IN were examined and shown to be essential for IN-LEDGF/p75 but not IN-Ku70 interaction.
In summary, this study advances our knowledge of the interaction network between IN and its cofactors, which would have important implications for the design of anti-HIV drugs.
|
1000 |
A study of the expression of a protein proteinase inhibitor from sweet cornDe Silva, H. A. Rohan January 1991 (has links)
Sweet Corn Inhibitor (SCI), a small (11811Da.) protein from the seeds of opaque-2 corn is a potent and specific inhibitor of trypsin and the activated Hageman Factor (Factor βXIIa) of the human blood plasma coagulation system. With the eventual aim of obtaining insight into the structure- function relationships of the selective SCI-pXIIa interaction, a synthetic gene for SCI was cloned into Saccharomyces cerevisiae (yeast) and Escherichia coli (E.coli) expression systems in an attempt to obtain overexpression of the recombinant gene product. The establishment of functional expression, together with an isolation and purification procedure for SCI would provide a system for obtaining selected reactive-site mutants of SCI by cassette- and oligonucleotide-directed mutagenesis. A yeast secretion vector for a truncated form of SCI (tSCI) was constructed by cloning the gene for α-factor prepro-tSCI fusion, downstream to the α-mating factor (MFα1) promoter of yeast. Yeast transformants containing the expression vector failed to express and secrete the desired product. The synthetic gene encoding the complete SCI sequence was cloned into E.coli expression vectors that directed both cytoplasmic and periplasmic expression. In cytoplasmic expression, the SCI gene was cloned directly downstream to the powerful, inducible λ-phage PL- and trc-promoters. No expression was obtained with the latter. With the former, expression levels of up to 3% of the total bacterial protein were obtained. These levels were improved 3- to 4-fold on incorporation of the E.coli dnaY gene product. Solubilisation and refolding of the purified SCI inclusion bodies failed to yield the active, correctly folded product. Failure to obtain an N-terminal sequence indicated an incompletely processed N-terminal methionine. For periplasmic expression, SCI, fused in-frame to the signal sequence of OmpA, a major E.coli outer membrane protein, was cloned into the same λ-phage P<sub>L</sub> promoter vector. High levels (=10%) of expression of insoluble SCI were obtained. The nearly homogeneous product was obtained by a two-step procedure, involving ion-exchange chromatography, followed by hydrophobic interaction chromatography. Characterisation by N-terminal sequencing, SDS-PAGE and electrospray mass spectrometry, confirmed the presence of correctly processed SCI in the form of covalently associated dimers. Refolding studies are at present in progress.
|
Page generated in 0.0585 seconds