• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Alkyne-Nitrone Cycloadditions for Functionalizing Cell Surface Proteins

McKay, Craig January 2012 (has links)
Over the past decade, bioorthogonal chemistry has emerged as powerful tools used for tracking biomolecules within living systems. Despite the vast number of organic transformations in the literature, only select few reactions meet the stringent requirements of bioorthogonality. There is increasing demands to develop biocompatible reactions that display high specificity and exquisitely fast kinetics under physiological conditions. With the goal of increasing reaction rates as a means for reducing the concentrations of labelling reagents used for bioconjugation, we have developed metal-catalyzed and metal-free alkyne-nitrone cycloadditions as alternatives to azide-alkyne cycloadditions and demonstrate their applications for imaging cell surface proteins. The copper(I)-catalyzed alkyne-nitrone cycloaddition, also known as the Kinugasa reaction, is typically conducted with a Cu(I) catalyst in the absence of air. We have developed highly efficient micelle promoted multicomponent Kinugasa reactions in aqueous media to make the reaction faster and more efficient. Despite good product yields, the slow kinetics, limited substrate scope and competing side-reaction pathways precludes its practical applicability for biological labelling. We have designed and synthesized β-lactam alkyne probes obtained from these reactions for activity-based protein profiling of the activities of membrane proteins. Additionally, we report that alkyne tethered β-lactams serve as surface enhanced Raman spectroscopy (SERS) reporters bound to silver nanoparticles, and demonstrated that alkyne bound silver nanoparticles can be used for SERS imaging cell surface proteins. The strain-promoted alkyne-nitrone cycloaddition (SPANC) was also explored as a rapid alternative bioorthogonal reaction. We found that the reaction proceeded in high yield within aqueous media, and displayed rate enhancements that were 1-2 orders of magnitude faster than analogous reactions involving azides. The scope and kinetics of SPANC was evaluated in model reactions of various nitrones (acyclic and cyclic) with cyclooctynes, with the purpose of identifying stable nitrones that displayed intrinsically faster kinetics than azides in strain-promoted cycloadditions with cyclooctynes. Cyclic nitrones displayed good stability and exceptionally fast reactivity in these reactions. The SPANC reaction exhibited high selectivity in the presence of biological nucleophilic amino acid side chains and the presence of biological media did not adversely affect the reaction. We have utilized SPANC for highly specific labelling of proteins in vitro and for imaging ligand-receptor interactions on the surfaces of live cancer cells. The high selectivity, fast reaction rate, and aqueous compatibility of SPANC makes the reaction suitable for a variety of in vivo biological imaging applications.
12

Peptide und Peptidnukleinsäuren zur Markierung und Organisation von Rezeptoren auf lebenden Zellen

Gröger, Katharina 14 August 2018 (has links)
Nukleinsäuren und Peptide erlauben es, Kontrolle über molekulare Prozesse auszuüben. In dieser Arbeit werden strukturgebende Elemente wie Coiled-Coil-Peptide oder PNA∙DNA-Strukturen genutzt, um Rezeptoren auf lebenden Zellen zu markieren und in ihrem Verhalten zu modulieren, oder cytosolische Proteine in ihrem Bindungsverhalten zu steuern. Im ersten Konzept wird die Interaktion des Coiled-Coil-Paars K3/E3 genutzt, um eine Transferreaktion, in welcher eine PNA-Sequenz vom K3-Donor auf den E3-Akzeptor übertragen wird, zu induzieren. Durch die Fusion des Akzeptorpeptids mit einem Rezeptor werden kovalente PNA-Rezeptorkonjugate auf der Oberfläche lebender Zellen geschaffen. Die Reaktion zwischen Thiol und Thioester erlaubt dabei einen schnellen Transfer. So wurden Rezeptoren aus der Familie der GPCR sowie der EGFR mit einem PNA-Strang versehen und durch fluoreszente PNA oder DNA selektiv markiert. Zusätzlich wurden verzweigte DNA-Architekturen mit mehreren Fluorophoren genutzt, um die Helligkeit der Markierung quantitativ zu erhöhen. Die PNA-EGFR-Konjugate wurden durch eine zwei Rezeptoren verbrückende Cy3-DNA adressiert und so zeitgleich markiert und dimerisiert. Dadurch wurde die Rezeptoraktivität gesteigert, was über Western Blot-, Immunofluoreszenz- und Fluoreszenzmikroskopieanalyse belegt wurde. In weiteren Ansätzen wurden Coiled-Coil-Systeme genutzt, um i) parallel zwei verschiedene Akzeptorpeptide mit verschiedenen Fluorophoren zu markieren und ii) Coiled-Coil-Peptide schaltbar zu machen. Durch die asymmetrische Verlängerung von K3/E3-Paaren mit Coiled-Coil-Sequenzen kann die Interaktion der Peptide an und aus geschaltet werden. Dies wurde sowohl in einem Fluoreszenzassay als auch in einer direkten Anwendung an der Syk-Kinase demonstriert. Die Liganden der Kinase wurden an den schaltbaren Peptiden angebracht und so die Affinität zur Syk-Kinase kontrolliert. / Nucleic acids and peptides can be used to obtain control over molecular processes within living cells. In this work, structural elements as coiled-coil peptides or PNA∙DNA-structures were used to label and modulate receptor behavior on living cells and to control ligand binding of cytosolic proteins. For the first concept the K3/E3-coiled-coil peptide pair was used to establish a proximity-guided, covalent transfer of a PNA strand from a K3-donor peptide onto the complementary E3-acceptor peptide. By fusion of the acceptor peptide to a receptor, PNA-receptor-conjugates were generated selectively on living cells. The native chemical ligation type of reaction allowed a fast PNA-transfer within minutes. Receptors from the family of GPCRs and the EGFR were tagged with a PNA-sequence and subsequently labeled by the addition of a fluorescent DNA or PNA. By recruiting branched DNA architectures which were decorated with several fluorophores, the total brightness of the labeling was increased quantitatively. A twice complementary Cy3-DNA was used to simultaneously label and dimerize the EGFR. Thereby, an artificially induced increase in receptor activity could be achieved, which was shown in Western Blot and immunofluorescence analysis as well as in fluorescence microscopy. In two other approaches coiled-coil peptides were used to i) label two different acceptor peptides simultaneously with two different dyes and ii) introduce coiled-coil peptides as part of a dynamic switchable system. Using an asymmetric coiled-coil elongation on the K3/E3 pair the interaction of both can be turned on and off. This was demonstrated in a fluorescence assay and applied to the Syk kinase, were Syk ligands were attached to the switchable peptides. Those ligands were changed from a bi- to a monovalent presentation status and thus the affinity of the Syk kinase towards its ligands can be controlled.

Page generated in 0.2215 seconds