Spelling suggestions: "subject:"1protein 3structure bnetwork"" "subject:"1protein 3structure conetwork""
1 |
A Multiscale Modeling Study of Iron Homeostasis in Mycrobacterium TuberculosisGhosh, Soma January 2014 (has links) (PDF)
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), has remained the largest killer among infectious diseases for over a century. The increasing emergence of drug resistant varieties such as the multidrug resistant (MDR) and extremely drug resistant (XDR) strains are only increasing the global burden of the disease. Available statistics indicate that nearly one-third of the world’s population is infected, where the bacteria remains in the latent state but can reactivate into an actively growing stage to cause disease when the individual is immunocompromised. It is thus immensely important to rethink newer strategies for containing and combating the spread of this disease.
Extraction of iron from the host cell is one of the many factors that enable the bacterium to survive in the harsh environments of the host macrophages and promote tuberculosis. Host–pathogen interactions can be interpreted as the battle of two systems, each aiming to overcome the other. From the host’s perspective, iron is essential for diverse processes such as oxygen transport, repression, detoxification and DNA synthesis. Infact, during infection, both the host and the pathogen are known to fight for the available iron, thereby influencing the outcome of the infection. It is of no surprise therefore, that many studies have investigated several components of the iron regulatory machinery of M.tb and the host. However, very few attempts have been made to study the interactions between these components and how such interactions lead to a better adapted phenotype. Such studies require exploration at multiple levels of structural and functional complexity, thereby necessitating the use of a multiscale approach.
Systems biology adopts an integrated approach to study and understand the function of biological systems. It involves building large scale models based on individual biochemical interactions, followed by model validation and predictions of the system’s response to perturbations, such as a gene knock-out or exposure to drug. In multiscale modeling, an approach employed in this thesis, a particular biological phenomenon is studied at different spatiotemporal levels. Studying responses at multiple scales provides a broader picture of the communications that occur between a host and pathogen. Moreover, such an analysis also provides valuable insights into how perturbation at a particular level can elicit
responses at another level and help in the identification of crucial inter-level communications that can possibly be hindered or activated for a desired physiological outcome.
The broad objectives of this thesis was to obtain a comprehensive in silico understanding of mycobacterial iron homeostasis and metabolism, the influence of iron on host-pathogen interactions, identification of key players that mediate such interactions, determination of the molecular consequences of inhibiting the key players and finally the global response of M.tb to altered iron concentration. Perturbation of iron homeostasis holds a strong therapeutic potential, given its essentiality in both the host and the pathogen. Understanding the workings of iron metabolism and regulation in M.tb has been a main objective, so as to ultimately obtain insights about specific therapeutic strategies that capitalize on the criticality of iron concentration.
An in-depth study of iron metabolism and regulation is performed at different levels of temporal and spatial scales using diverse methods, each appropriate to investigate biological events associated with the different scales. The specific investigations carried out in the thesis are as follows,
a) Reconstruction of a host-pathogen interaction (HPI) model, with focus on iron homeostasis. This study represented the inter-cellular level analysis and was crucial for the identification of key players that mediate communication between the host and pathogen. Additionally, the model also provided a mathematical framework to study the effect of perturbations and gene knock-outs.
b) Understanding the influence of iron on IdeR, an iron-responsive transcription factor, also
identified as a key player in the HPI model. The study was carried out at the molecular level to identify atomistic details of how IdeR senses iron and the resulting structural modifications, which finally enables IdeR-DNA interaction. The study enabled identification of residues for the functioning of IdeR.
c) Genome scale identification of genes that are regulated by IdeR to obtain an overview of the various biological processes affected by changing iron concentrations and IdeR mutation in M.tb.
d) To understand the direct and indirect influences of iron and IdeR on the M.tb proteome using large scale protein-protein interaction network. The study enabled identification of highest differentially regulated genes and altered activity of the different biological processes under differing iron concentrations and regulation.
e) Systems level analysis of the M.tb metabolome to investigate the metabolic re-adjustments undertaken by M.tb to adapt to altered iron concentration and regulation.
The conceptual details and the background of each of the methods used to study the specific aims are provided in the Methodology chapter (Chapter 2).
Construction of the host-pathogen interaction (HPI) model and the insights obtained from this study are presented in Chapter 3. A rule based HPI model was built with a focus on the iron regulatory mechanisms in both the host and pathogen. The model consisted of 194 rules, of which 4 rules represented interactions between the host and pathogen. The model not only represented an overview of iron metabolism but also allowed prediction of critical interaction that had the potential to form bottleneck in the system so as to control bacterial proliferation. Infact, model simulation led to the identification of 5 bottlenecks or chokepoints in the system, which if perturbed, could successfully interfere with the host-pathogen dynamics in favour of the host. The model also provided a framework to test perturbation strategies based on the bottlenecks. The study also established the importance of an iron responsive transcription factor, IdeR for regulating iron concentration in the pathogen and mediating host-pathogen interactions. Additionally, the importance of mycobactin and transferrin as key molecular players, involved in host-pathogen dynamics was also determined. The model provided a mathematical framework to test TB pathogenesis and provided significant insights about key molecular players and perturbation strategies that can be used to enhance therapeutic strategies.
Given the importance of IdeR in HPI, its molecular mechanism of activation and dimerization was explored in Chapter 4. The main objective of the study was to explore the structural details of IdeR and its iron sensing capacity at the molecular level. A combination of molecular dynamics and protein structure network (PSN) were used to analyse IdeR monomers and dimers in the presence and absence of iron. PSNs used in this thesis are based
on non-covalent interactions between sidechain atoms and are quite efficient in identifying iron induced subtle conformational variations. The study distinctly indicated the role of iron in IdeR stability. Further, it was observed that IdeR monomers can take up two major conformations, the ‘open’ and ‘close’ conformation with the iron bound structure preferring the ‘close’ conformation. Major structural changes, such as the N-terminal folding and increased propensity for dimerization were observed upon iron binding. Interestingly, careful analysis of structure suggests a role of these structural modifications towards DNA binding and has been tested in the next chapter. Overall, the results clearly highlight the influence of iron on IdeR activation and dimerization. The predisposition of IdeR to bind to DNA in the presence of metal is clearly visible even when the simulations are performed solely on protein molecules. However, to confirm the conjectures proposed in this chapter and to obtain the atomistic details of IdeR-DNA interactions, the IdeR-DNA complex was investigated.
Chapter 5 focuses on the mechanistic details of IdeR-DNA interactions and the influence of iron on the same. IdeR is known to bind to a specific stretch of DNA, known as the ‘iron-box’ motif to form a dimer-of-dimer complex. Molecular dynamics followed by protein-DNA bipartite network analysis was performed on a set of four IdeR-DNA complexes to obtain a molecular level understanding of IdeR-DNA interactions. A striking observation was the dissociation of IdeR-DNA complex in the absence of iron, undoubtedly establishing the importance of iron for IdeR-DNA binding. At the residue level, hydrogen bond and non-covalent interactions clearly established the importance of N-terminal residues for DNA binding, thereby confirming the conjecture put forth in the previous chapter. An important aspect studied in this chapter is the allosteric nature of IdeR-DNA binding. Recent years have witnessed a paradigm shift in the understanding of allostery. Unlike the classical definition of allostery that was based on static structures, the newer definition is based on the conformational ensemble as represented by the shift in the energy landscape of the protein. The allosteric nature of IdeR-DNA complex was probed using simulated trajectories and indeed they suggest iron to be an allosteric regulator of the protein. Finally, based on the known experimental data and observations presented in Chapters 4 and 5, a multi-step model of IdeR activation and DNA binding has been proposed.
In chapter 6, a global perspective of IdeR regulation in M.tb was obtained. This was important to gain insights about the influences of iron and its regulation at the M.tb cellular level. A genome scale identification of all possible IdeR targets based on the presence of
‘iron-box’ motif in the promoter region of the genes was carried out. An interesting aspect of this study was the use of energetic information from previous molecular dynamics study as an input for generation of the motif. A total of 255 such IdeR targets were identified and converted into an IdeR target network (IdeRnet). Along with IdeRnet, an unbiased systems level protein-protein interaction network was also generated. To study the response of the pathogen to external perturbations, iron-specific gene expression data was integrated into the network as node weights and edge weights. Analysis of IdeRnet provides interesting associations between fatty acid metabolism and IdeR regulations. Specific genes such as fadD32, DesA3 or lppW have been found to be affected by IdeR mutation. While IdeRnet discusses the direct associations, the global level responses are monitored by analysing pathways for the flow of information in the protein-protein interaction network (PPInet). Comparisons of the PPInets under conditions such as altering iron concentrations and lack of iron homeostasis led to the identification of the ‘top-most’ active paths under the different conditions. The study clearly suggests a halt in the protein synthesis machinery and decreased energy consumption under iron scarcity and an uninhibited consumption of energy when iron homeostasis is perturbed.
In the final chapter (Chapter 7), flux balance analyses has been used to investigate the influence of iron on M.tb metabolism. The importance of iron for metabolic enzymes has already been established in the previous chapter. Additionally, M.tb is known to produce siderophores, an important metabolite that requires amino acids as its precursors, for iron extraction. All this, together highlighted the importance of iron and its regulation of M.tb metabolism. Flux balance analysis has been used previously to study the metabolic alterations that occur in an organism under different conditions. For this study, iron specific gene expression data was also incorporated into the model as reaction bounds and the flux values so obtained were compared in different environmental conditions. The study provided valuable insights into the metabolic adjustments taken up by M.tb under iron stress conditions and correlates well with the responses observed from the interactome as well as experimental observations. Most significantly, changes were observed in the energy
preferences of the cell. For instance, it was noted that while the wild type strain of M.tb prefers synthesis of ATP via glycolysis, the IdeR mutant strain preferred oxidative phosphorylation. The picture becomes clearer when one accounts for the uncontrolled utilization of energy and rapid activation of protein synthesis machinery in the IdeR mutant strain.
Biological systems are inherently multiscale in nature and therefore for a successful drug target regime, analysis of the genome to the phenome, which captures interactions at multiple levels, is essential. In this thesis, a detailed understanding of iron homeostasis and regulation in M.tb at multiple levels has been attempted. More importantly, insights obtained from one level, formed questions in the next level. The study was initiated at the inter-cellular level, where the influence of iron on HPI was modeled and analysed. From this study, IdeR, an iron-responsive transcription factor was identified as a key player that had the potential to alter host-pathogen interactions in the favour of the host. For a complete understanding of how IdeR regulates iron homeostasis, it was imperative to obtain a molecular level insight of its mechanism of action. Finally, the various aspects of IdeR regulation were investigated at the cellular level by analysing direct and indirect influences of IdeR on M.tb proteome and metabolome. The study suggests certain therapeutic interventions, such as 1) reduction in the concentration of free transferrin various, 2) mutations at the N-terminal sites of IdeR, 3) regulation of proteins involved in production of mycolic acids by iron and 4) perturbation of altering energy sources, which capitalize on iron and should be investigated in detail. In summary, the consequences of iron on TB infection were studied by threading different levels. This is based on the belief that most biological functions involve multiple spatio-temporal levels with frequent cross talks between the different levels, thereby making such multiscale approaches very useful.
|
2 |
Structure-Function Correlations In Aminoacyl tRNA Synthetases Through The Dynamics Of Structure NetworkGhosh, Amit 07 1900 (has links)
Aminoacyl-tRNA synthetases (aaRSs) are at the center of the question of the origin of life and are essential proteins found in all living organisms. AARSs arose early in evolution to interpret genetic code and are believed to be a group of ancient proteins. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. These enzymes ensure the fidelity of transfer of genetic information from the DNA to the protein. They are responsible for attaching amino acid residues to their cognate tRNA molecules by virtue of matching the nucleotide triplet, which is the first step in the protein synthesis.
The translation of genetic code into protein sequence is mediated by tRNA, which accurately picks up the cognate amino acids. The attachment of the cognate amino acid to tRNA is catalyzed by aaRSs, which have binding sites for the anticodon region of tRNA and for the amino acid to be attached. The two binding sites are separated by ≈ 76 Å and experiments have shown that the communication does not go through tRNA (Gale et al., 1996). The problem addressed here is how the information of binding of tRNA anticodon near the anticodon binding site is communicated to the active site through the protein structure. These enzymes are modular with distinct domains on which extensive kinetic and mutational experiments and supported by structural data are available, highlighting the role of inter-domain communication (Alexander and Schimmel, 2001). Hence these proteins present themselves as excellent systems for in-silico studies.
Various methods involved for the construction of protein structure networks are well established and analyzed in a variety of ways to gain insights into different aspects of protein structure, stability and function (Kannan and Vishveshwara, 1999; Brinda and Vishveshwara, 2005). In the present study, we have incorporated network parameters for the analysis of molecular dynamics (MD) simulation data, representing the global dynamic behavior of protein in a more elegant way. MD simulations have been performed on the available (and modeled) structures of aaRSs bound to a variety of ligands, and the protein structure networks (PSN) of non-covalent interactions have been characterized in dynamical equilibrium. The changes in the structure networks are used to understand the mode of communication, and the paths between the two sites of interest identified by the analysis of the shortest path. The allosteric concept has played a key role in understanding the biological functions of aaRSs. The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. We have explored the conformational changes in the complexes of aaRSs through novel parameters such as cliques and communities (Palla et al., 2005), which identify the rigid regions in the protein structure networks (PSNs) constructed from the non-covalent interactions of amino acid side chains.
The thesis consists of 7 chapters. The first chapter constitutes the survey of the literature and also provides suitable background for this study. The aims of the thesis are presented in this chapter. Chapter 2 describes various techniques employed and the new techniques developed for the analysis of PSNs. It includes a brief description of well -known methods of molecular dynamics simulations, essential dynamics, and cross correlation maps. The method used for the construction of graphs and networks is also described in detail. The incorporation of network parameters for the analysis of MD simulation data are done for the first time and has been applied on a well studied protein lysozyme, as described in chapter 3.
Chapter 3 focuses on the dynamical behavior of protein structure networks, examined by considering the example of T4-lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein with explicit water molecules at 300K and at higher temperatures (400K, 500K) respectively. Three simulations of 10ns duration have been performed at 500K to ensure the validity of the results. The snapshots of the protein structure from the simulations are represented as Protein Structure Networks (PSN) of non-covalent interactions. The strength of the non-covalent interaction is evaluated and used as an important criterion in the construction of edges. The profiles of the network parameters such as the degree distribution and the size of the largest cluster (giant component) have been examined as a function of interaction strength (Ghosh et al., 2007). We observe a critical strength of interaction (Icritical) at which there is a transition in the size of the largest cluster. Although the transition profiles at all temperatures show behavior similar to those found in the crystal structures, the 500K simulations show that the non-native structures have lower Icritical values. Based on the interactions evaluated at Icritical value, the folding/unfolding transition region has been identified from the 500K simulation trajectories. Furthermore, the residues in the largest cluster obtained at interaction strength higher than Icritical have been identified to be important for folding. Thus, the compositions of the top largest clusters in the 500K simulations have been monitored to understand the dynamical processes such as folding/unfolding and domain formation/disruption. The results correlate well with experimental findings. In addition, the highly connected residues in the network have been identified from the 300K and 400K simulations and have been correlated with the protein stability as determined from mutation experiments. Based on these analyses, certain residues, on which experimental data is not available, have been predicted to be important for the folding and the stability of the protein. The method can also be employed as a valuable tool in the analysis of MD simulation data, since it captures the details at a global level, which may elude conventional pair-wise interaction analysis.
After standardizing the concept of dynamical network analysis using Lysozyme, it was applied to our system of interest, the aaRSs. The investigations carried out on Methionyl-tRNA synthetases (MetRS) are presented in chapter 4. This chapter is divided into three parts:
Chapter 4A deals with the introduction to aminoacyl tRNA synthetases (aaRS). Classification and functional insights of aaRSs obtained through various studies are presented.
Chapter 4B is again divided into parts: BI and BII. Chapter 4BI elucidates a new technique developed for finding communication pathways essential for proper functioning of aaRS. The enzymes of the family of tRNA synthetases perform their functions with high precision, by synchronously recognizing the anticodon region and the amino acylation region, which is separated by about 70Å in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modelled the structure of E.coli Methionyl tRNA synthetase, which is complexed with tRNA and activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross correlations between the residues in MetRS. Furthermore, the network analysis on these structures has been carried out to elucidate the paths of communication between the aminoacyl activation site and the anticodon recognition site (Ghosh and Vishveshwara, 2007). This study has provided the detailed paths of communication, which are consistent with experimental results. A similar study on the (MetRS + activated methionine) and (MetRS+tRNA) complexes along with ligand free-native enzyme has also been carried out. A comparison of the paths derived from the four simulations has clearly shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The method developed here could also be utilized to investigate any protein system where the function takes place through long distance communication. The details of the method of our investigation and the biological implications of the results are presented in this chapter.
In chapter 4BII, we have explored the conformational changes in the complexes of E.coli Methionyl tRNA synthetase (MetRS) through novel parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs). The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. MetRS belongs to the aminoacyl tRNA Synthetases (aaRSs) family that play a crucial role in initiating the protein synthesis process. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the inter-domain communication in detail. Additionally, the characterization of conformational changes in terms of cliques/communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in clique/communities are strikingly different from those that take part in long-range communication. The cliques/communities evaluated here for the first time on PSNs have beautifully captured the local geometries in their detail within the framework of global topology. Here the allosteric effect is revealed at the residue level by identifying the important residues specific for structural rigidity and functional flexibility in MetRS.
Chapter 4C focuses on MD simulations of Methionyl tRNA synthetase (AmetRS) from a thermophilic bacterium, Aquifex aeolicus. As describe in Chapter 4B, we have explored the communication pathways between the anticodon binding region and the aminoacylation site, and the conformational changes in the complexes through cliques and communities. The two MetRSs from E.coli and Aquifex aeolicus are structurally and sequentially very close to each other. But the communication pathways between anticodon binding region and the aminoacylation site from A. aeolicus have differed significantly with the communication paths obtained from E.coli. The residue composition and cliques/communities structure participating in communication are not similar in the MetRSs of both these organisms. Furthermore the formation of cliques/communities and hubs in the communication paths are more in A. aeolicus compared to E.coli. The participation of structurally homologous linker peptide, essential for orienting the two domains for efficient communication is same in both the organisms although, the residues composition near domain interface regions including the linker peptide is different. Thus, the diversity in the functioning of two different MetRS has been brought out, by comparing the E.coli and Aquifex aeolicus systems.
Protein Structure network analysis of MD simulated trajectories of various ligand bound complexes of Escherichia coli Cysteinyl-tRNA synthetase (CysRS) have been discussed in Chapter 5. The modeling of the complex is done by docking the ligand CysAMP into the tRNA bound structure of E.coli Cysteinyl tRNA synthetase. Molecular dynamics simulations have been performed on the modeled structure and the paths of communications were evaluated using a similar method as used in finding communication paths for MetRS enzymes. Compared to MetRS the evaluation of communication paths in CysRS is complicated due to presence of both direct and indirect readouts. The direct and indirect readouts (DR/IR) involve interaction of protein residues with base-specific functional group and sugar-phosphate backbone of nucleic acids respectively. Two paths of communication between the anticodon region and the activation site has been identified by combining the cross correlation information with the protein structure network constructed on the basis of non-covalent interaction. The complete paths include DR/IR interactions with tRNA. Cliques/communities of non-covalently interacting residues imparting structural rigidity are present along the paths. The reduction of cooperative fluctuation due to the presence of community is compensated by IR/DR interaction and thus plays a crucial role in communication of CysRS.
Chapter 6 focuses on free energy calculations of aminoacyl tRNA synthetases with various ligands. The free energy contributions to the binding of the substrates are calculated using a method called MM-PBSA (Massova and Kollman, 2000). The binding free energies were calculated as the difference between the free energy of the enzyme-ligand complex, and the free ligand and protein. The ligand unbinding energy values obtained from the umbrella sampling MD correlates well with the ligand
binding energies obtained from MM-PBSA method. Furthermore the essential dynamics was captured from MD simulations trajectories performed on E.coli MetRS,
A. aeolius MetRS and E.coli CysRS in terms of the eigenvalues. The top two modes account for more than 50% of the motion in essential space for systems E.coli MetRS,
A. aeolius MetRS and E.coli CysRS. Population distribution of protein conformation states are looked at the essential plane defined by the two principal components with highest eigenvalues. This shows how aaRSs existed as a population of conformational states and the variation with the addition of ligands. The population of conformational states is converted into Free energy contour surface. From free energy surfaces, it is evident that the E.coli tRNAMet bound MetRS conformational fluctuations are more, which attributes to less rigidity in the complex. Whereas E.coli tRNACys bound CysRS conformational fluctuations are less and this is reflected in the increase in rigidity of the complex as confirmed by its entropic contribution.
Future directions have been discussed in the final chapter (Chapter 7). Specifically, it deals with the ab-initio QM/MM study of the enzymatic reaction involved in the active site of E.coli Methionyl tRNA synthetase. To achieve this, two softwares are integrated: the Quantum Mechanics (QM) part includes small ligands and the Molecular Mechanics (MM) part as protein MetRS are handled using CPMD and Gromacs respectively. The inputs for two reactions pathways are prepared. First reaction involves cyclization reaction of homocysteine in the active site of MetRS and the second reaction deals with charging of methionine in the presence of ATP and magnesium ion. These simulations require very high power computing systems and also time of computation is also very large. With the available computational power we could simulate up to 10ps and it is insufficient for analysis. The future direction will involve the simulations of these systems for longer time, followed by the analysis for reaction pathways.
|
3 |
Probing Ligand Induced Perturbations In Protien Structure Networks : Physico-Chemical Insights From MD Simulations And Graph TheoryBhattacharyya, Moitrayee 06 1900 (has links) (PDF)
The fidelity of biological processes and reactions, inspite of the widespread diversity, is programmed by highly specific physico-chemical principles. This underlines our basic understanding of different interesting phenomena of biological relevance, ranging from enzyme specificity to allosteric communication, from selection of fold to structural organization / states of oligomerization, from half-sites-reactivity to reshuffling of the conformational free energy landscape, encompassing the dogma of sequence-structure dynamics-function of macromolecules. The role of striking an optimal balance between rigidity and flexibility in macromolecular 3D structural organisation is yet another concept that needs attention from the functional perspective. Needless to say that the variety of protein structures and conformations naturally leads to the diversity of their function and consequently many other biological functions in general. Classical models of allostery like the ‘MWC model’ or the ‘KNF model’ and the more recently proposed ‘population shift model’ have advanced our understanding of the underlying principles of long range signal transfer in macromolecules. Extensive studies have also reported the importance of the fold selection and 3D structural organisation in the context of macromolecular function. Also ligand induced conformational changes in macromolecules, both subtle and drastic, forms the basis for controlling several biological processes in an ordered manner by re-organizing the free energy landscape.
The above mentioned biological phenomena have been observed from several different biochemical and biophysical approaches. Although these processes may often seem independent of each other and are associated with regulation of specialized functions in macromolecules, it is worthwhile to investigate if they share any commonality or interdependence at the detailed atomic level of the 3D structural organisation. So the nagging question is, do these diverse biological processes have a unifying theme, when probed at a level that takes into account even subtle re-orchestrations of the interactions and energetics at the protein/nucleic acid side-chain level. This is a complex problem to address and here we have made attempts to examine this problem using computational tools. Two methods have been extensively applied: Molecular Dynamics (MD) simulations and network theory and related parameters. Network theory has been extensively used in the past in several studies, ranging from analysis of social networks to systems level networks in biology (e.g., metabolic networks) and have also found applications in the varied fields of physics, economics, cartography and psychology. More recently, this concept has been applied to study the intricate details of the structural organisation in proteins, providing a local view of molecular interactions from a global perspective. On the other hand, MD simulations capture the dynamics of interactions and the conformational space associated with a given state (e.g., different ligand-bound states) of the macromolecule. The unison of these two methods enables the detection and investigation of the energetic and geometric re-arrangements of the 3D structural organisation of macromolecule/macromolecular complexes from a dynamical or ensemble perspective and this has been one of the thrust areas of the current study. So we not only correlate structure and functions in terms of subtle changes in interactions but also bring in conformational dynamics into the picture by studying such changes along the MD ensemble.
The focus was to identify the subtle rearrangements of interactions between non-covalently interacting partners in proteins and the interacting nucleic acids. We propose that these rearrangements in interactions between residues (amino acids in proteins, nucleic acids in RNA/DNA) form the common basis for different biological phenomena which regulates several apparently unrelated processes in biology. Broadly, the major goal of this work is to elucidate the physico-chemical principles underlying some of the important biological phenomena, such as allosteric communication, ligand induced modulation of rigidity/flexibility, half-sites-reactivity and so on, in molecular details. We have investigated several proteins, protein-RNA/DNA complexes to formulate general methodologies to address these questions from a molecular perspective. In the process we have also specifically illuminated upon the mechanistic aspects of the aminoacylation reaction by aminoacyl-tRNA synthetases like tryptophanyl and pyrrolysyl tRNA synthetase, structural details related to an enzyme catalyzed reaction that influences the process of quorum sensing in bacteria. Further, we have also examined the ‘dynamic allosterism’ that manipulates the activity of MutS, a prominent component of the DNA bp ‘mismatch repair’ machinery. Additionally, our protein structure network (PSN) based studies on a dataset of Rossmann fold containing proteins have provided insights into the structural signatures that drive the adoption of a fold from a repertoire of diverse sequences. Ligand induced percolations distant from the active sites, which may be of functional relevance have also been probed, in the context of the S1A family of serine proteases. In the course of our investigation, we have borrowed several concepts of network parameters from social network analysis and have developed new concepts.
The Introduction (Chapter-1) summarizes the relevant literature and lays down a suitable background for the subsequent chapters in the thesis. The major questions addressed and the main goal of this thesis are described to set an appropriate stage for the detailed discussions. The methodologies involved are discussed in Chapter-2. Chapter-3 deals with a protein, LuxS that is involved in the bacterial quorum sensing; the first part of the chapter describes the application of network analysis on the static structures of several LuxS proteins from different organisms and the second part of this chapter describes the application of a dynamic network approach to analyze the MD trajectories of H.pylori LuxS. Chapter-4 focuses on the investigation of human tryptophanyl-tRNA synthetase (hTrpRS), with an emphasis to identify ligand induced subtle conformational changes in terms of the alternation of rigidity/flexibility at different sites and the re-organisation of the free energy landscape. Chapter-5 presents a novel application of a quantum clustering (QC) technique, popular in the fields of pattern recognition, to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. The protein structure network (PSN) in the earlier studies were constituted on the basis of geometric interactions. In Chapters 6 and 7, we describe the networks (proteins+nucleic acids) using interaction energy as edges, thus incorporating the detailed chemistry in terms of an energy-weighted complex network. Chapter-6 describes an application of the energy weighted network formalism to probe allosteric communication in D.hafniense pyrrolysyl-tRNA synthetase. The methodology developed for in-depth study of ligand induced changes in DhPylRS has been adopted to the protein MutS, the first ‘check-point protein’ for DNA base pair (bp) mismatch repair. In Chapter-7, we describe the network analysis and the biological insights derived from this study (the work is done in collaboration with Prof. David Beveridge and Dr. Susan Pieniazek). Chapter-8 describes the application of a network approach to capture the ligand-induced subtle global changes in protein structures, using a dataset of high resolution structures from the S1A family of serine proteases. Chapter-9 deals with probing the structural rationale behind diverse sequences adopting the same fold with the NAD(P)-binding Rossmann fold as a case study. Future directions are discussed in the final chapter of the thesis (Chapter-10).
|
Page generated in 0.0697 seconds