• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Direct electron transfer peroxidase enzyme electrodes and their application to electrochemical immunoassay

Ho, Wah On January 1994 (has links)
No description available.
2

Electrochemical studies of biological electron transfer

Guo, Liang-Hong January 1990 (has links)
No description available.
3

The electrochemistry of some biological macromolecules

Page, D. J. January 1986 (has links)
No description available.
4

Engineering cytochrome P450BM3 into a drug metabolising enzyme

Yorke, Jake January 2012 (has links)
Directed evolution studies by Whitehouse et al. identified several variants of P450BM3 (CYP102A1) with enhanced substrate oxidation rates across a range of substrates. This thesis describes the use of these ‘generic accelerator’ variants, in combination with selectivity altering mutations to engineer P450BM3¬ for the oxidation of pharmaceuticals. Using engineered variants the non-steroidal anti-inflammatory drug diclofenac was metabolised to the primary human metabolites 4′- and 5-hydroxydiclofenac, with total conversion of 2 mM substrate by 5 μM enzyme. The local-anaesthetic lidocaine and the steroid testosterone were similarly metabolised to human metabolites. This is the first report of a drug compound being totally converted to the human metabolites by a P450BM3 variant, and is also the first report of lidocaine metabolism by a P450¬BM3 variant. The engineered variants are akin to CYP3A4, the primary human drug metabolising enzyme, as they show activity towards a range of compounds including anionic, cationic and neutral drugs. This range of activity is at the expense of NADPH coupling, which remains low with these substrates. In order to more fully understand the origin of the rate enhancing properties of the generic accelerator variants, spectroelectrochemical, stopped-flow and kinetic studies were performed. A custom optically transparent thin layer electrode system was designed and fabricated for use in spectroelectrochemical titrations. A spectroelectrochemical cell and gold mesh electrode were designed and used in spectroelectrochemical investigations of P450BM3 variants, as well as other P450s and their redox partners. These spectroelectrochemical, stopped-flow and kinetic studies, in combination with X-ray crystal structures provided insight into the origin of the rate enhancing properties of these enzymes and supplied the first example of the complete characterization of the thermodynamic and kinetic properties of WT and mutant P450BM3 for the oxidation of a non-natural substrate. The generic accelerator variants are, in the resting state, in a more catalytically ready conformation than the WT enzyme, and reorganization energy barriers appear to be lowered, so that fewer substrate-induced structural changes are required to promote electron transfer and initiate the catalytic cycle.
5

The Investigation and Characterization of the Group 3 [NiFe]-Hydrogenases Using Protein Film Electrochemistry

January 2012 (has links)
abstract: Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered. / Dissertation/Thesis / Ph.D. Biochemistry 2012

Page generated in 0.1062 seconds