Spelling suggestions: "subject:"1protein folding."" "subject:"2protein folding.""
161 |
Protein folding and phylogenetic tree reconstruction using stochastic approximation Monte CarloCheon, Sooyoung 17 September 2007 (has links)
Recently, the stochastic approximation Monte Carlo algorithm has been proposed
by Liang et al. (2005) as a general-purpose stochastic optimization and simulation
algorithm. An annealing version of this algorithm was developed for real small protein folding problems. The numerical results indicate that it outperforms simulated
annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein
folding. The predicted protein structures are rather close to the true structures.
Phylogenetic trees have been used in biology for a long time to graphically represent evolutionary relationships among species and genes. An understanding of evolutionary relationships is critical to appropriate interpretation of bioinformatics results.
The use of the sequential structure of phylogenetic trees in conjunction with stochastic approximation Monte Carlo was developed for phylogenetic tree reconstruction.
The numerical results indicate that it has a capability of escaping from local traps
and achieving a much faster convergence to the global likelihood maxima than other phylogenetic tree reconstruction methods, such as BAMBE and MrBayes.
|
162 |
Characterisation of the plasmodium falciparum Hsp40 chaperones and their partnerships with Hsp70 /Botha, Melissa. January 2008 (has links)
Thesis (Ph.D. (Biochemistry, Microbiology & Biotechnology)) - Rhodes University, 2009.
|
163 |
Structural studies on the B1 domain of protein L : biophysical affects of single site mutations, 3D-domain swapping, and computational redesign /O'Neill, Jason Charles Walker. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 100-106).
|
164 |
The novel mouse [gamma]A-crystallin mutation leads to misfolded protein aggregate and cataractCheng, Man-hei. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 104-115). Also available in print.
|
165 |
Free energy functions in protein structural stability and folding kinetics /Morozov, Alexandre V., January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 96-115).
|
166 |
A study of biological role of reactive oxygen species in cellular response in stressLam, Dennis, 林勁行 January 2012 (has links)
When proteins are unable to fold properly in the endoplasmic reticulum (ER), the
resultant formation of misfolded proteins causes stress of the ER. Cells with ER stress
often have a higher abundance of reactive oxygen species (ROS). Previous studies
suggest that ROS could aggravate ER stress by further disrupting the ER protein
folding process. More recent studies suggest that the unfolded protein response
signaling pathways activated by ER stress could lead to the production of ROS. Such
studies lead to the hypothesis that ER stress could be promoted by ROS, and vice
versa. The aim of the present study is to test the above hypothesis by studying how
ROS could be generated in ER-stressed cells. This is followed by investigating if ROS
could increase or decrease the level of ER stress in cells. Finally, the extent of ER
stress induced cell death in the presence and absence of ROS is assessed.
The treatment of HeLa cells with tunicamycin (Tm), a common ER-stress
inducing agent, resulted in the elevation of intracellular ROS that could be detected
with the ROS-reactive probe dichlorodihydrofluorescein (DCF), but not
dihydroethidium which is relatively specific towards superoxide anion. The
Tm-induced elevation of ROS could be prevented by co-incubation of cells with thiol
reductants such as dithiothreitol and N-acetylcysteine but not with the free radical
scavenger ascorbate. The tunicamycin-induced elevation of ROS level could also be
prevented by the over-expression of catalase in HeLa. These data is consistent with
the idea that hydrogen peroxide is a major form of ROS produced in Tm-treated cells.
In addition to elevation of ROS level, HeLa cells treated with tunicamycin also
resulted in the phosphorylation of PERK and eIF2α, and the splicing of XBP-1. In the
presence of cycloheximide to inhibit protein synthesis so as to deplete protein
substrates for folding in the ER, tunicamycin-induced ER stress was greatly
minimized as was evident by the absence of both the phosphorylation of PERK and
splicing of XBP-1. However, the phosphorylation of eIF2α and elevation of
DCF-detectable ROS remained unaffected. The cycloheximde-resistant
phosphorylation of eIF2α could be prevented when cells were co-treated with thiol
reductants, or upon the over-expression of catalase. These data suggest that the
production of ROS in Tm-treated cells does not require the presence of ER stress as a
prerequisite. Furthermore, the ROS so produced could induce phosphorylation of
eIF2α without the need to cause ER stress in the first place.
The quenching of ROS through the use of thiol reductants, or the over-expression
of catalase, had no effect on inhibition of protein synthesis in cells treated with
tunicamycin. However, the extent of cell death was significantly increased. The data
obtained in this study is not consistent with the idea that ROS is a downstream
product of ER stress, capable of inducing more ER-stress by a feedback mechanism.
Therefore, a mutually enhancing effect between ER stress and ROS may not exist.
The ROS found in stressed cells may serve to extend cellular survival under the
condition of continuous stress. / published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
|
167 |
Exploiting aromatic donor-acceptor recognition in the folding and binding of naphthyl oligomersGabriel, Gregory John 28 August 2008 (has links)
Not available / text
|
168 |
The engineering of de novo pathways for oxidative protein folding in Escherichia coliMasip, Lluis 28 August 2008 (has links)
Not available / text
|
169 |
Coarse-grained modeling of concentrated protein solutionsCheung, Jason Ka Jen 28 August 2008 (has links)
Not available / text
|
170 |
Probing the denatured state ensemble with fluorescenceAlston, Roy Willis 30 September 2004 (has links)
To understand protein stability and the mechanism of protein folding, it is essential that we gain a better understanding of the ensemble of conformations that make up the denatured state of a protein. The primary goal of the research described here was to see what we might learn about the denatured state using fluorescence. To this end, tryptophan was introduced at five sites in Ribonuclease Sa (RNase Sa): D1W, Y52W, Y55W, T76W, and Y81W. The fluorescent properties of the denatured states of these five proteins were studied and compared to the fluorescent properties of eight model compounds: N-acetyl-tryptophan-amide (NATA), N-acetyl-Ala-Trp-Ala-amide (AWA), N-acetyl-Ala-Ala-Trp-Ala-Ala-amide (AAWAA), and five pentapeptides based on the sequence around the original tryptophan substitutions in RNase Sa. Regardless of the denaturant, λmax for the proteins and model compounds differed very little, 349.3 ± 1.2 nm. However, significant differences were observed in the fluorescence intensity at λmax (IF), suggesting that IF is more sensitive to the immediate environment than λmax. The differences in IF are due in part to quenching by neighboring side chains. More importantly, IF was always significantly greater in the protein than in its corresponding pentapeptide, indicating that the protein exerts an effect on the tryptophan, which cannot be mimicked by the pentapeptide models. Acrylamide and iodide quenching experiments were also performed on the model compounds and proteins. Significant differences in the Stern-Volmer quenching constant (KSV) were also observed between the proteins and between the proteins and their corresponding pentapeptides. Importantly, the KSV for the protein was always less than in its corresponding pentapeptide. These data along with the IF data show that non-local structure in the unfolded state influences tryptophan fluorescence and accessibility. In summary, these and our other studies show that fluorescence can be used to gain a better understanding of the denatured states of proteins.
|
Page generated in 0.0727 seconds