Spelling suggestions: "subject:"stochastic approximation fonte carlo"" "subject:"stochastic approximation fonte sarlo""
1 |
Protein folding and phylogenetic tree reconstruction using stochastic approximation Monte CarloCheon, Sooyoung 17 September 2007 (has links)
Recently, the stochastic approximation Monte Carlo algorithm has been proposed
by Liang et al. (2005) as a general-purpose stochastic optimization and simulation
algorithm. An annealing version of this algorithm was developed for real small protein folding problems. The numerical results indicate that it outperforms simulated
annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein
folding. The predicted protein structures are rather close to the true structures.
Phylogenetic trees have been used in biology for a long time to graphically represent evolutionary relationships among species and genes. An understanding of evolutionary relationships is critical to appropriate interpretation of bioinformatics results.
The use of the sequential structure of phylogenetic trees in conjunction with stochastic approximation Monte Carlo was developed for phylogenetic tree reconstruction.
The numerical results indicate that it has a capability of escaping from local traps
and achieving a much faster convergence to the global likelihood maxima than other phylogenetic tree reconstruction methods, such as BAMBE and MrBayes.
|
2 |
Statistical Inference for Models with Intractable Normalizing ConstantsJin, Ick Hoon 16 December 2013 (has links)
In this dissertation, we have proposed two new algorithms for statistical inference for models with intractable normalizing constants: the Monte Carlo Metropolis-Hastings algorithm and the Bayesian Stochastic Approximation Monte Carlo algorithm. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. At each iteration, it replaces the unknown normalizing constant ratio by a Monte Carlo estimate. Although the algorithm violates the detailed balance condition, it still converges, as shown in the paper, to the desired target distribution under mild conditions. The BSAMC algorithm works by simulating from a sequence of approximated distributions using the SAMC algorithm. A strong law of large numbers has been established for BSAMC estimators under mild conditions. One significant
advantage of our algorithms over the auxiliary variable MCMC methods is that they avoid the requirement for perfect samples, and thus it can be applied to many models for which perfect sampling is not available or very expensive. In addition, although the normalizing constant approximation is also involved in BSAMC, BSAMC can perform very robustly to initial guesses of parameters due to the powerful ability of SAMC in sample space exploration. BSAMC has also provided a general framework for approximated Bayesian inference for the models for which the likelihood function is intractable: sampling from a sequence of approximated distributions with their average converging to the target distribution. With these two illustrated algorithms, we have demonstrated how the SAMCMC method can be applied to estimate the parameters of ERGMs, which is one of the typical examples of statistical models with intractable normalizing constants. We showed that the resulting estimate is consistent, asymptotically normal and asymptotically efficient. Compared to the MCMLE and SSA methods, a significant advantage of SAMCMC is that it overcomes the model degeneracy problem. The strength of SAMCMC comes from its varying truncation mechanism, which enables SAMCMC to avoid the model degeneracy problem through re-initialization. MCMLE and SSA do not possess the re-initialization mechanism, and tend to converge to a solution near the starting point, so they often fail for the models which suffer from the model degeneracy problem.
|
3 |
Thesis_deposit.pdfSehwan Kim (15348235) 25 April 2023 (has links)
<p> Adaptive MCMC is advantageous over traditional MCMC due to its ability to automatically adjust its proposal distributions during the sampling process, providing improved sampling efficiency and faster convergence to the target distribution, especially in complex or high-dimensional problems. However, designing and validating the adaptive scheme cautiously is crucial to ensure algorithm validity and prevent the introduction of biases. This dissertation focuses on the use of Adaptive MCMC for deep learning, specifically addressing the mode collapse issue in Generative Adversarial Networks (GANs) and implementing Fiducial inference, and its application to Causal inference in individual treatment effect problems.</p>
<p><br></p>
<p> First, GAN was recently introduced in the literature as a novel machine learning method for training generative models. However, GAN is very difficult to train due to the issue of mode collapse, i.e., lack of diversity among generated data. We figure out the reason why GAN suffers from this issue and lay out a new theoretical framework for GAN based on randomized decision rules such that the mode collapse issue can be overcome essentially. Under the new theoretical framework, the discriminator converges to a fixed point while the generator converges to a distribution at the Nash equilibrium.</p>
<p><br></p>
<p> Second, Fiducial inference was generally considered as R.A. Fisher's a big blunder, but the goal he initially set, <em>making inference for the uncertainty of model parameters on the basis of observations</em>, has been continually pursued by many statisticians. By leveraging on advanced statistical computing techniques such as stochastic approximation Markov chain Monte Carlo, we develop a new statistical inference method, the so-called extended Fiducial inference, which achieves the initial goal of fiducial inference. </p>
<p><br></p>
<p> Lastly, estimating ITE is important for decision making in various fields, particularly in health research where precision medicine is being investigated. Conditional average treatment effect (CATE) is often used for such purpose, but uncertainty quantification and explaining the variability of predicted ITE is still needed for fair decision making. We discuss using extended Fiducial inference to construct prediction intervals for ITE, and introduces a double neural net algorithm for efficient prediction and estimation of nonlinear ITE.</p>
|
4 |
Non-convex Bayesian Learning via Stochastic Gradient Markov Chain Monte CarloWei Deng (11804435) 18 December 2021 (has links)
<div>The rise of artificial intelligence (AI) hinges on the efficient training of modern deep neural networks (DNNs) for non-convex optimization and uncertainty quantification, which boils down to a non-convex Bayesian learning problem. A standard tool to handle the problem is Langevin Monte Carlo, which proposes to approximate the posterior distribution with theoretical guarantees. However, non-convex Bayesian learning in real big data applications can be arbitrarily slow and often fails to capture the uncertainty or informative modes given a limited time. As a result, advanced techniques are still required.</div><div><br></div><div>In this thesis, we start with the replica exchange Langevin Monte Carlo (also known as parallel tempering), which is a Markov jump process that proposes appropriate swaps between exploration and exploitation to achieve accelerations. However, the na\"ive extension of swaps to big data problems leads to a large bias, and the bias-corrected swaps are required. Such a mechanism leads to few effective swaps and insignificant accelerations. To alleviate this issue, we first propose a control variates method to reduce the variance of noisy energy estimators and show a potential to accelerate the exponential convergence. We also present the population-chain replica exchange and propose a generalized deterministic even-odd scheme to track the non-reversibility and obtain an optimal round trip rate. Further approximations are conducted based on stochastic gradient descents, which yield a user-friendly nature for large-scale uncertainty approximation tasks without much tuning costs. </div><div><br></div><div>In the second part of the thesis, we study scalable dynamic importance sampling algorithms based on stochastic approximation. Traditional dynamic importance sampling algorithms have achieved successes in bioinformatics and statistical physics, however, the lack of scalability has greatly limited their extensions to big data applications. To handle this scalability issue, we resolve the vanishing gradient problem and propose two dynamic importance sampling algorithms based on stochastic gradient Langevin dynamics. Theoretically, we establish the stability condition for the underlying ordinary differential equation (ODE) system and guarantee the asymptotic convergence of the latent variable to the desired fixed point. Interestingly, such a result still holds given non-convex energy landscapes. In addition, we also propose a pleasingly parallel version of such algorithms with interacting latent variables. We show that the interacting algorithm can be theoretically more efficient than the single-chain alternative with an equivalent computational budget.</div>
|
Page generated in 0.1465 seconds