• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 32
  • 24
  • 19
  • 18
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 634
  • 634
  • 131
  • 125
  • 106
  • 100
  • 92
  • 82
  • 72
  • 70
  • 64
  • 61
  • 59
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Regulation of two subfamilies of adenylyl cyclase by Gi-coupled receptors : a possible role during cAMP-dependent synaptic plasticity in the Hippocampus /

Nielsen, Mark David, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [115]-133).
512

Potentiation of microglial toll-like receptor stimulated inflammatory cytokine output by manganese a role for p38 mitogen-activated protein kinase /

Crittenden, Patrick L. January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. College of Veterinary Medicine. / Title from title screen. Includes bibliographical references.
513

Identification of intracellular signaling pathways regulated by the TAO family of mammalian STE20p kinases

Raman, Malavika. January 2006 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Embargoed. Vita. Bibliography: 180-194.
514

The transition from progenitor cell to neuron : fibroblast growth factors and their role in retinal ganglion cell neurogenesis /

McCabe, Kathryn Leigh. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 100-117).
515

Development of a Selective Cell-Permeable Protein Phosphatase 1 Inhibitor

Saha, Kaushik January 2016 (has links) (PDF)
Selective ‘super-specific’ inhibitors of Protein Phosphatase 1 (PP1) are not available. Several natural product toxins possessing marginal selectivity between PP1 and the closely related Protein Serine/Threonine Phosphatase (PSTP), Protein Phosphatase 2A (PP2A) have been used to study the role of PP1 and PP2A in cellular signaling processes, such as the cyclic peptide inhibitors (microcystins and nodularins); terpenoid (cantharidin); polyketides (okadaic acid, calyculin, and tautomycin). The organic molecule tautomycetin is a natural product which has the highest selectivity for PP1 compared to the closely related PSTP PP2A, albeit slightly so (about 39 times more selective). Calyculin A is equally selective to PP1 and PP2A. On the other hand, okadaic acid is about 100 times more selective towards PP2A compared to PP1. Specific protein inhibitors are not suitable for cell-based assay due to low, intrinsic cellular permeability of proteins. A si-RNA mediated knockdown approach though feasible, is not ‘fast-acting’. The knockdown often lasts for an extended time period and cannot be modulated (turned on or off) as desired. Also, analysis of knockdown data is complex as the system can regulate itself in complex ways, making any effort to interpret the data liable to misinterpretation. The ultimate goal of this project is to develop a cell-permeable, potent, and selective inhibitor for PP1 (which does not target the related protein phosphatases PP2A, PP2B and PP5) whose activity inside cells can be modulated as desired so that spatiotemporal control over the activity of PP1 can be achieved. Development of such an inhibitor can be used as a chemical tool to study the cellular signaling of PP1 and not by the related PSTP PP2A. To address the problem of a lack of inhibitor targeting Protein Phosphatase 1 selectively over the closely related PSTP, PP2A; design of a peptide based inhibitor has been envisioned which targets the acidic groove and hydrophobic groove of Protein Phosphatase 1 in addition to targeting the active site (triple approach combination). The parent peptide (V6.2.10) of this study has been designed using a co-crystal structure of rat PP1cγ complexed with mouse inhibitor-2 (PDB ID: 2O8A). The parent peptide V6.2.10 has an IC50 value of 4.2 µM, which has been confirmed in the present study. A combination of single site mutations has been made using N-terminus arginine scanning, C-terminus arginine scanning, active site mutations, cyclohexylalanine scanning, and miscellaneous site-specific mutations. A hydrophobic pocket present in Protein Phosphatase 1 has been probed using ortho and meta fluorophenyalanine residue to increase potency and metabolic stability of the peptide. The rationale for such mutations was based upon a combination of approaches: mutagenesis in PyMOL, calculation of binding energies in FoldX, suitability of parent residues to be mutated, and how important are parent and substituent residues for cellular permeability and metabolic stability. Several peptides were identified from single-site mutations which had lower (improved) IC50 compared to the parent peptide of the study, V6.2.10. Several double mutations combining potent single-mutant peptides identified from this study has lower (improved) IC50 values than either of the single mutant peptides. #30 (combination of #15 and #4.2) has an IC50 value of about 334 nM and #36 (combination of #15 and 4-Fluoro Phenylalanine at the F5 position) has an IC50 value of 531 nM. #30 is the optimized peptide inhibitor from this study which is currently being utilized for crystallization trails in the laboratory. Far UV Circular dichroism study of #4.2 peptide shows mostly random coil conformation along with contributions from other secondary structures. Moreover, #4.2 is capable of adopting an alpha helical conformation in the presence of the well-known helix inducer chemical trifluoroethanol. Purification of PP1α protein using affinity chromatography has been optimized in order to increase the yield of pure protein phosphatase 1. Attempts to express and purify PP1α protein in BL21 (DE3) bacterial cells gave low yield. Thus, expression and purification of PP1α protein derived from human genomic sequence has been attempted in BL21 (RIL) codon-optimized cells which resulted in increased production of pure protein.
516

Synthèse et évaluation biologique de nouveaux composés hétérocycliques potentiellement inhibiteurs de protéine-kinases / Synthesis and biological evaluation of new heterocycle compounds potentially inhibitors of protein-kinases

Letribot, Boris 26 January 2015 (has links)
Les protéine-kinases appartiennent à une large famille d’enzymes impliquées dans de multiples processus cellulaires. Habituellement soumises à un fin contrôle, leur dérégulation est à l’origine de nombreuses maladies parmi lesquelles les cancers et les pathologies neurodégénératives. Le développement de puissants inhibiteurs sélectifs des protéine-kinases permettant de réguler leur activité représente une piste prometteuse pour traiter les pathologies associées. Dans le cadre de la recherche de nouveaux inhibiteurs de kinases et la valorisation des produits de la mer en thérapeutique, nous avons envisagé la conception et la synthèse de nouveaux hétérocycles à sous structures 3-alcényl-oxindole, 3-alcényl-azaoxindole et 3-alcényl-diazaoxindole. Bon nombre d’alcaloïdes naturels issus du milieu terrestre ou du milieu marin, ou encore des agents thérapeutiques tel que le Sunitinib présentent une structure de type alcényl-oxindole. Par l’intermédiaire de la chimie du chlorure de 4,5-dichloro-1,2,3-dithiazolium (sel d’Appel), nous avons développé et étudié au départ de divers dérivés azotés à méthylène actif (oxindoles, azaoxindoles et diazaoxindoles) de nouvelles voies d’accès permettant d’obtenir des séries originales de dérivés de 3-alcényl-oxindoles portant au niveau de l’alcène exocyclique des hétérocycles, des amino-nitriles et des thio-nitriles. Impulsé par le fort pouvoir inhibiteur de kinases des bis-oxindoles mimes de l’alcaloïde indirubine, nous avons entrepris la synthèse de nouveaux indirubinoïdes et isoindigoïdes polyazotés. Afin de dégager des relations structure activité, plus de 80 nouveaux dérivés 3-alcényl-oxindoles, azaoxindoles, diazaoxindoles présentant une grande diversité chimique ont été préparés et évalués sur différentes cibles biologiques. Plusieurs de ces dérivés présentent des activités micromolaires sur les kinases DYRK1A, GSK3 et submicromolaire sur CK1. Les évaluations biologiques sur des lignées de cellules cancéreuses ont permis d’identifier plusieurs thio et amino-3-alcényl-oxindoles cytotoxiques avec des activités de l’ordre du micromolaire. / Deregulation of protein kinases leads to numerous pathologies such as cancers and neurodegenerative diseases. In order to identify new scaffolds able to inhibit this proteins we synthesized new 3-alkenyl-oxindoles. By the mean of Appel’s salt chemistry, we develop a new synthetic route to this skeleton. Our approach allows variation of the substituent of the exocyclic akene which can be functionalized by heterocycles, amino-nitriles or thio-nitrile which are obtained after selective ring opening of (1,2,3)-dithiazoles. In another part, given powerful indirubin kinase inhibitory potency, we synthesized new analogs indiribunoids and isoindigoids. In both cases (3-akenyl-oxindoles from Appel’s salt chemistry and indigoids), the aromatic ring were substituted by various electron withdrawing group and nitrogen were incorporated to determinate structure activity relationship. All this 80 original 3-alkenyl-oxindoles were evaluated for their ability to inhibit kinase activity and cell proliferation.
517

Autour du noyau imidazo[4,5-b]pyridine : inhibiteurs potentiels de la protéine kinase Tyro3 et fonctionnalisation directe de liaisons C – H. / The imidazo[4,5-b]pyridine scaffold : inhibitors of protein kinase Tyro3 and direct C - H functionalization

Baladi, Tom 18 November 2016 (has links)
Etant au quatrième rang des cancers les plus fréquents chez l'homme, le cancer de la vessie représente un enjeu médical important. Pourtant, à ce jour, seuls des traitements chirurgicaux handicapants et/ou chimiothérapiques non spécifiques peuvent être envisagés. Le projet de thèse s'inscrit dans le cadre de la recherche de thérapies ciblées du cancer de la vessie en ayant pour objectif le blocage, au niveau moléculaire et de manière sélective, des voies de signalisation mises en œuvre par la tyrosine kinase Tyro3 au sein des cellules cancéreuses. La mise en évidence de la surexpression de ce récepteur membranaire dans la majorité des tumeurs de vessie et son rôle dans la survie des cellules cancéreuses ont en effet permis de valider Tyro3 comme cible thérapeutique pour ce type de cancers. Le projet peut se diviser en trois parties : le développement de nouvelles méthodologies de synthèse autour du motif imidazo[4,5-b]pyridine, la synthèse d'une librairie de candidats inhibiteurs en utilisant les méthodes mises au point et enfin l'étude des relations structure-activité vis-à-vis de la protéine kinase Tyro3. / Bladder cancer is a major medical issue, being the fourth most frequent cancer in men and treatable only with heavy surgery and/or broad-spectrum chemotherapy. This thesis project deals with the discovery of new targeted therapies of bladder cancer by blocking specifically, at a molecular scale in cancer cells, the signaling pathways in which protein kinase Tyro3 is involved. Indeed, its overexpression in most bladder cancers and the major part it plays in cancer cells survival have led to the validation of protein kinase Tyro3 as a therapeutic target for the treatment of bladder cancer. This thesis project can be divided into three main parts: the development of new synthetic methods around the imidazo[4,5-b]pyridine scaffold, the synthesis of a library of compounds using these methods and eventually the study of structure-activity relationships of these compounds versus Tyro3.
518

MAPK pathway as a target for therapy in melanoma

Krayem, Mohammad 29 May 2015 (has links)
\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
519

Úloha proteinkinázy StkP v regulaci buněčného dělení Streptococcus pneumoniae / The role of protein kinase StkP in regulation of the cell division in Streptococcus pneumoniae

Malíková, Eliška January 2011 (has links)
Protein phosphorylation by protein kinases is a key mechanizm that enables both eukaryotic and prokaryotic organizm sense and read environmental signals and convert these signals into changes in gene expression and thus proper biological response. One of the main phosphorylation systems in bacteria consists of eukaryotic-like Ser/ Thr protein kinases. The genome of human pathogen Streptococcus pneumoniae contains single Ser/ Thr protein kinase StkP. StkP regulates virulence, competence, stress resistance, gene expression and plays an important role in the regulation of cell division cycle. Analysis of phosphoproteome maps of both wild type and ΔstkP mutant strain of S. pneumoniae showed that in vivo StkP phosphorylates several putative substrates including the cell division protein DivIVA (NOVÁKOVÁ et al., 2010). DivIVA in S. pneumoniae is localized at midcell and at the cell poles. It was proposed to be primarily involved in the formation and maturation of the cell poles (FADDA et al., 2007). The aim of this thesis was to investigate phosphorylation of the cell division protein DivIVA in S. pneumoniae. Gene divIVA was cloned, expressed in E. coli and protein was purified via affinity chromatography. Phosphorylation of DivIVA by StkP was examined in a kinase assay. We confirmed that DivIVA is a direct...
520

Modulation of the Mdm2 signaling axis sensitizes triple-negative breast cancer cells to carboplatin

Tonsing-Carter, Eva Y. 12 1900 (has links)
Triple-negative breast cancers (TNBCs) are highly refractive to current treatment strategies, and new multi-targeted treatments need to be elucidated. Combination therapy that includes targeting the murine double minute 2 (Mdm2) signaling axis offers a promising approach. Protein-protein interaction inhibitors such as Nutlin-3a block the binding of key signaling molecules such as p53, p73α, and E2F1 to the hydrophobic pocket of Mdm2 and can lead to activation of cell-death signaling pathways. Since clinical trials for TNBC are evaluating the DNA damaging agent carboplatin, the objective of this thesis was to evaluate the therapeutic potential and mechanism of action of combination carboplatin and Nutlin-3a to treat TNBC. In TNBC cell lines with a mutant p53 background, we determined if modulation of Mdm2 function in the context of carboplatin-mediated DNA damage resulted in a synergistic inhibition of cell growth. Several ratios of carboplatin:Nutlin-3a were strongly synergistic in increasing cell death, with combination indices of 0.5 and lower. Mechanistic studies indicated that drug sensitivity and Mdm2 expression were dependent on p73. Mdm2 localized to a larger degree in the chromatin fraction isolated from cells treated with the combination treatment consistent with observations by others that Mdm2 binds to the Mre11/Rad50/Nbs1 complex, inhibits the DNA damage response, and increases drug sensitivity. In vivo efficacy experiments were conducted in the TMD231 orthotopic mammary fat pad model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. For assessment of baseline tumor burden and randomization, fluorescent imaging of E2-Crimson expressing TMD231 cells was performed. Following Nutlin-3a and carboplatin combination treatment, there was a statistically significant reduction in primary tumor volume as well as lung metastases with significantly increased probability of survival compared to Vehicle and single drug treatments (p<0.001). While there was a decrease in bone-marrow cellularity, this did not lead to bone-marrow aplasia, and body weights recovered to normal levels within 7 days post-treatment. The present studies demonstrate the promise of Mdm2 as a therapeutic target in combination with conventional therapy, increase our understanding of how to potentiate DNA damage in cancers, and may lead to new clinical therapies for triple-negative primary and metastatic breast cancer.

Page generated in 0.0848 seconds