• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 32
  • 24
  • 19
  • 18
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 634
  • 634
  • 131
  • 125
  • 106
  • 100
  • 92
  • 82
  • 72
  • 70
  • 64
  • 61
  • 59
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Ativação da AMPK hipotalâmica induzida por frutose aumenta a gliconeogênese hepática e a expressão de PEPCK no fígado de ratos = Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels / Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels

Kinote, Andrezza Pinheiro Bezerra de Menezes, 1977- 24 August 2018 (has links)
Orientador: Gabriel Forato Anhê / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-24T03:29:53Z (GMT). No. of bitstreams: 1 Kinote_AndrezzaPinheiroBezerradeMenezes_D.pdf: 2061057 bytes, checksum: ec05cb4119a4301a63d35bb8a38a59cc (MD5) Previous issue date: 2014 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic document / Doutorado / Farmacologia / Doutora em Farmacologia
472

Signal transduction mechanisms and nuclear effectors in gene expression during hypertrophy of cardiac myocytes

Pikkarainen, S. (Sampsa) 16 May 2003 (has links)
Abstract During cardiac hypertrophy individual cardiac myocytes increase in size, which is accompanied by augmented protein synthesis and selective induction of a subset of genes. These phenotypic changes of myocytes are a result from altered intracellular signaling mechanisms and molecules. B-type natriuretic peptide (BNP) gene was selected as a target gene for the study of cardiac signaling mechanisms, since it is activated by mechanical, neural and humoral stimuli during myocyte hypertrophy. To generate hypertrophy of cardiac myocytes, neonatal rat cardiac myocytes were subjected to exogenous hypertrophic agonists such as endothelin-1 (ET-1) or to cyclic mechanical stretch. The role and regulation of transcription factors were studied by utilizing promoter analysis together with site-specific mutations and measurement of DNA binding activity and phosphorylation. GATA-4 mediated signaling was inhibited by blocking DNA binding with decoy oligonucleotides or by decreasing GATA-4 synthesis via adenoviral antisense delivery. ET-1 activated GATA-4 via serine residue phosphorylation, and this effect was mediated via p38 kinase. Similarly, GATA-4 binding activity was increased by ET-1 and mechanical stretch, but it was essential for activation of BNP gene only in the latter stimulation. Importantly, downregulation of GATA-4 protein levels prevented mechanical stretch induced hypertrophy of cardiac myocytes. In contrast, separate mechanism for an ET-1 specific signaling was composed of p38 kinase regulated ETS-like transcription factor-1 (Elk-1). Finally, the effect of mechanical stretch on endogenous endothelin-1 (ET-1) synthesis in cardiac cells was studied. Intrinsic ET-1 synthesis was activated in stretched cardiac myocytes, yet the levels of ET-1 were relatively low. This work suggests that GATA-4 transcription factor is required for mechanical stretch mediated hypertrophic program, and Elk-1 may act as a downstream effector of ET-1 in cardiac myocytes. Taken together, induction of ET-1 and BNP genes as well as activation of GATA-4 and Elk-1 transcription factors are regulated via a network of mitogen activated protein kinase pathways.
473

Gene expression profiling in experimental models of cardiac load

Rysä, J. (Jaana) 01 April 2008 (has links)
Abstract Cardiac hypertrophy provides an adaptive mechanism to maintain cardiac output in response to increased workload, and although initially beneficial, hypertrophy eventually leads to heart failure, a major cause of morbidity and mortality in Western countries. The hypertrophic response in cardiac myocytes is accompanied by e.g. activation of signal transduction pathways, such as mitogen-activated protein kinases (MAPKs), and complex changes in gene programming. The purpose of this study was to characterize gene expression patterns in experimental models of cardiac load by using high-throughput DNA microarray technologies. In the present study, changes in gene expression were evaluated in response to acute pressure overload and prolonged hypertension as well as during the development of left ventricular hypertrophy (LVH) and the transition to diastolic heart failure in an animal model of genetic hypertension, the spontaneously hypertensive rat (SHR). Increased expression of several immediate early genes was seen in response to acute hemodynamic overload in vivo. The transition from LVH to diastolic hypertensive heart failure was almost exclusively associated with changes in genes encoding extracellular matrix proteins and their regulatory processes showing the importance of progressive extracellular matrix remodeling. The effect of p38 MAPK activation on gene expression patterns in vivo was elucidated. Cardiac-specific overexpression of p38 MAPK resulted in upregulation of genes controlling cell division and inflammation as well as cell signaling and adhesion. Accordingly, the functional role of p38 MAPK was related to myocardial cell proliferation, inflammation and fibrosis. Finally, temporal analysis of mechanical stretch induced gene expression changes in neonatal rat cardiomyocyte cultures in vitro indicated that mechanical stretch induced complex gene expression profiles, demonstrating that both positive and negative regulators are involved in the hypertrophic process. Many novel stretch responsive genes were identified, and a subset of them may be putative downstream targets of p38 MAPK. In conclusion, in the present study a number of well-established gene expression changes of cardiac hypertrophy were observed and novel modulators associated with increased cardiac load, such as thrombospondin-4, were identified. The study provides a better understanding of molecular mechanisms associated with increased cardiac load, and may indicate potential targets for novel therapeutic interventions.
474

Synthesis and Kinetic Mechanism Study of Phosphonopeptide as a Dead-End Inhibitor of cAMP-Dependent Protein Kinase

Yang, Chunhua 12 1900 (has links)
DL-2-Amino-4-phosphonobutyric acid, an isostere of phosphoserine, was incorporated into the heptapeptide sequence, Leu-Arg-Arg-Ala-(DL-2-amino-4-phosphonobutyric acid)-Leu-Gly, for kinetic mechanistic studies of the cAMP-dependent protein kinase. To block the phosphono hydroxyl groups, methyl, ethyl and 4nitrobenzyl esters were studied as possible protecting groups. The phosphono diethyl ester of the N-Fmoc-protected amino acid was utilized in the synthesis of the heptapeptide. Two configurational forms of the protected peptide were obtained and were separated by C18-reverse phase HPLC. Characterization of the two isomeric forms was accomplished by 3 1P NMR, 1H NMR, 13C% NMR and amino acid analysis. The protecting groups of the isomeric phsophonopeptides were removed by HBr/AcOH and purified by cation exchange HPLC. Both phosphonopeptides were found to be inhibitors of the cAMP-dependent protein kinase, having Ki values of 0.6 mM (peptide A) and 1.9 mM (peptide B).
475

Conformational analysis of peptides and proteins for drug design using molecular simulations

Atzori, Alessio January 2015 (has links)
The intrinsic plasticity of biological systems provides opportunities for rational design of selective and potent ligands. Increasingly, computational methods are being applied to predict biomolecular flexibility. However, the motions involved in these processes can be large and occur on time scales generally difficult to achieve with standard simulation methods. In order to overcome the intrinsic limitations of classical molecular dynamics, this Ph.D. project focuses on the application of advanced sampling computational techniques to capture the plasticity of diverse biological systems. The first of these applications involved the evaluation of the secondary structure of the N-terminal portion of p53 and its inverse, reverse and retro-inverso sequences by using replica exchange molecular dynamics simulations in implicit solvent. In this study, we also evaluated the effects of reversal of sequence and stereochemistry in mimicking an inhibitory pharmacophoric conformation. The results showed how the ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). Moreover, the structural information obtained from simulations showed good agreement with NMR and circular dichroism studies, confirming the validity of the combination of replica exchange molecular dynamics with the ff99SB force field and Generalized Born solvent model for computational modelling of D-peptide conformations.In a second work, we explored conformations of the DFG motif of the p38α mitogen-activated protein (MAP) kinase. To achieve this, we employed an advanced sampling simulation method that has been developed in-house, called swarm-enhanced sampling molecular dynamics (sesMD). In contrast to multiple independent MD simulations, swarm-coupled sesMD trajectories were able to sample a wide range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between DFG-in and DFG-out conformations were predicted to have druggable pockets of interest for structure-based ligand design. Overall, sesMD shows promise as a useful tool for enhanced sampling of complex conformational landscapes. Finally, we used microsecond MD simulations to evaluate the molecular plasticity of R-spondins, a class of proteins involved in the activation of the Wnt pathway. The unbound R-spondin 1 is characterised by a closed conformation, while, when complexed to proteins LGR and RNF43/ZNRF3, assumes an open and more extended arrangement. This is true also for R-spondin 2, in both its unbound or bound forms. From our simulation, we find that the closed R-spondin 1 conformation is stable, whilst, R-spondin 1 and 2 from their open conformation explore several intermediate structures. In addition, we evaluated the druggability of a potential binding site located at the interface between the second and the third β-hairpin moiety of the first furin domain. The computational screening with small molecular fragments provided interesting insights about the druggability and the pharmacophoric features of the potential binding pockets identified, outlining promising future perspectives of structure-based design of Wnt pathway inhibitors.
476

Identification and characterisation of mitogen activated protein kinases in leaf tissue of Nicotiana tabacum in response to elicitation by Lipopolysaccharides.

Piater, Lizelle Ann 15 May 2008 (has links)
Lipopolysaccharides from Gram-negative bacteria are amphipathic, tripartite molecules consisting of a hydrophobic lipid A portion, a core hetero-oligosaccharide and a repetitive hydrophilic O-antigen polysaccharide region. Through cell : cell interactions, plants can come into contact with LPS originating from root-associated rhizobacteria, bacterial endophytes as well as bacterial pathogens. Biologically active LPS molecules have been shown to act as determinants of bacterial virulence but also as determinants of induced systemic resistance (ISR) and activators of the phenotypically related systemic acquired resistance (SAR), characterised by accelerated and enhanced defence responses. LPS as a ¡¥pathogen associated molecular pattern, PAMP¡¦ molecule, has the ability to activate the innate mammalian immunity system and to act as an immunomodulator of immune ¡V and inflammatory systems via the conserved lipid A region. It is thus believed that LPS is able to promote plant disease resistance through activation of ISR and/or SAR; however here, the O-antigen region is also implicated to play a pivotal role in the signal perception and transduction in response to elicitation by this bio-active lipoglycan. LPS was isolated from the cell walls of the endophyte, Burkholderia cepacia, characterised by denaturing electrophoresis and compared to the equivalent from the pathogen Ralstonia solanacearum. When dissolved in the presence of Ca2+ and Mg2+, the LPS attained its biologically active micellar state through complex formation. The former LPS strongly induced the activation of two MAPKs following treatment of Nicotiana tabacum cv Samsun leaves, while comparative inductions with the R. solanacearum counterpart were extremely weak and might be ascribed to it lacking an extensive O-antigen region. No previous reports on LPS-responsive MAP kinases in plant tissues exist in the literature. The time- and dose dependent activation of the two kinases were therefore investigated and their physico-chemical properties compared. A novel 32 kDa MAP kinase was transiently activated in response to exposure to LPS with optimal activation at 7 min post-elicitation with 100 ƒÝg.ml-1 LPS. Its identity as an ERK (extracellular signal-related) MAPK was confirmed by immunodetection with a pTEpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylated association of activation and inhibition of activation by U0126, an inhibitor of upstream MAPKKs. The kinase did not utilise casein, histone or myelin basic protein as substrates and no endogenous substrate could be identified. The activated MAP kinase exhibited a pI of 6.3, but two charge isomers of 32 kDa respectively were found upon two-dimensional electrophoresis. Although loss of the dual-phosphorylated epitope during purification attempts prevented extensive purification, 30% ammonium sulphate fractionation significantly (33 fold) enriched the MAPK. A second, distinct, 30 kDa MAP kinase was transiently activated in response to 125 ƒÝg.ml-1 LPS at 40 min post-elicitation, and its identity as a p38 MAPK, to date not yet found in plants, was confirmed by immunodetection with a pTGpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylation associated with activation and inhibition of activation by SB203580, a direct inhibitor of p38 MAPKs. The kinase did not utilise casein, histone or MBP as substrates and no endogenous substrate could be identified. The kinase displayed a pI of 6.0, but two charge isomers of 30 kDa respectively were found following two-dimensional electrophoresis. Loss of the dual-phosphorylated epitope again prevented significant purification, but the protein was found to be significantly (83 fold) enriched by 30% ammonium sulphate fractionation. Although LPS has been reported to be capable of altering Ca2+ permeability and perturbation of Ca2+ homeostasis across plasma membranes, Ca2+ did not appear to potentiate or reduce the activation of either the 30 or the 32 kDa kinases. To date other MAP kinases have been shown to act either independently or upstream from reactive oxygen intermediates (ROI) produced during the oxidative burst. It was found that peroxide and concomitant ROI is either not generated in leaf tissue in response to LPS elicitation, or if generated, do not trigger the activation of the two kinases. The identification and partial characterisation of these two novel tobacco MAPKs in the signal perception and transduction response to LPS, significantly contributes to understanding the biochemical basis of the mechanism of action of LPS as a ¡¥resistance elicitor¡¦ involved in the triggering of effective plant defence responses and contributes towards relating the activation of mammalian innate immunity to similar responses in plants. / Prof. I.A. Dubery
477

Caracterização funcional = a cinase humana Nek5 interfere negativamente na morte celular e no processo de poliglutamilação = Functional characterization : the human kinase Nek5 interferes negatively in cell death and the polyglutamylation process / Functional characterization : the human kinase Nek5 interferes negatively in cell death and the polyglutamylation process

Melo Hanchuk, Talita Diniz, 1985- 03 May 2015 (has links)
Orientador: Jörg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-27T05:36:59Z (GMT). No. of bitstreams: 1 MeloHanchuk_TalitaDiniz_D.pdf: 15551209 bytes, checksum: 4fffad9810f85e106f425f0bfbde833b (MD5) Previous issue date: 2015 / Resumo: Membros da família das Neks são cruciais para o início da mitose em eucariotos. Têm sido funcionalmente atribuídas a todas as 11 Neks humanas uma das três principais funções estabelecidas para esta família em mamíferos: (1) centríolos / divisão celular; (2) funções no cílio primário / ciliopatias; e (3) resposta à danos no DNA (DDR). No artigo de revisão (artigo I), relatamos uma análise detalhada atual sobre cada uma das 11 Neks. A hipótese é que as Neks possam conectar elementos reguladores que permitem o refinamento e a sincronização de eventos celulares. Dentre os membros desta família, Nek5 é a cinase mais negligenciada. Ensaios de duplo híbrido em leveduras (Y2H) foram realizados para identificar e caracterizar parceiros de interação Nek5; e proteínas mitocondriais foram observadas (artigo II). Ensaios de apoptose mostraram efeitos protetores na morte celular após tratamento com tapsigargina (2 ?M) de células HEK293T que superexpressam a hNek5, bem como a diminuição na formação de Espécies Reativas de Oxigênio após 4 horas de tratamento. A atividade da cadeia respiratória mitocondrial estava diminuída após superexpressão de hNek5, especialmente nas etapas de transferência de elétrons do TMPD para o citocromo c e no complexo II. O Y2H permitiu também a identificação da poliglutamilase de proteínas TTLL4 como um parceiro de Nek5 (artigo III). Células silenciadas para a Nek5, assim como células que expressam a versão "kinase dead" de Nek5, apresentaram por western blot e ensaio in vitro de atividade poliglutamilação um aumento na poliglutamilação de proteínas após transfecção com TTLL4. Em conclusão, nossos dados sugerem pela primeira vez a localização mitocondrial e a participação de Nek5 na morte celular e no processo poliglutamilação diminuindo a atividade de TTLL4 através de sua fosforilação inibitória / Abstract: Members of the Nek Family are crucial for the initiation of mitosis eukaryotes. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). In the core section of the review (article I), we report the current detailed functional knowledge on each of the 11 Neks. We raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize cellular events. Nek5 is the most neglected among members of the Nek kinases family. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and mitochondrial proteins were retrieved (article 2). Apoptosis assay showed protective effects of hNek5 over-expression from Hek293-T¿s cell death after thapsigargin treatment (2 ?M) as well as an increase in ROS formation after 4 hours of treatment. Mitochondrial respiratory chain activity was found decreased upon hNek5 over-expression especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. The yeast two-hybrid allowed also the identification o TTLL4 as a Nek5 partner (article 3). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in polyglutamylation of proteins after TTLL4 transfection by western blot and in vitro polyglutamylation activity assay. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. This work also showed the function of Nek5 in the polyglutamylation process decreasing the role of TTLL4 through inhibitory phosphorylation by Nek5 / Doutorado / Bioquimica / Doutora em Biologia Funcional e Molecular
478

Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'-Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities

Oliveira, Marcelio 19 November 2009 (has links)
A new series of N6,5'-bis-ureido-5'-amino-5'-deoxyadenosine derivatives was prepared and evaluated for anticancer activities using the NCI 60 panel of human cancers. Certain of the derivatives showed promising activities (low micromolar GI50's) against several of the representative cancers. These included cell lines from the following general cell types in the NCI 60: Leukemia, Breast, Central Nervous System, Non-Small Cell Lung, Ovarian, Prostate, Renal, and Colon cancers. Select compounds were also screened for their affinities for protein kinases. The synthesis of the compounds was straightforward and involved N6 acylation with arylisocyanates, preceded by activation and nucleophilic substitution of the 5'-position to give the desired 5'-azido-5'-deoxyadenosine derivatives. Reduction of the 5'-azido function with either H2/Pd-C, or Ph3P/H2O, gave the desired 5'-amino-5' deoxyadenosine products. Acylation of the 5'-amino group with N-methyl 4-nitrophenylcarbamate gave the N6,5'-bis-ureido-5'-amino-5' deoxyadenosine products. Yields ranged from good (50–75%) to excellent (75–95%) for all synthetic transformations.
479

Differential Translocation or Phosphorylation of Alpha B Crystallin Cannot Be Detected in Ischemically Preconditioned Rabbit Cardiomyocytes

Armstrong, Stephen C., Shivell, Christine L., Ganote, Charles E. 01 January 2000 (has links)
Alpha B Crystallin (αBC) is a putative effector protein of ischemic preconditioning (IPC). that is phosphorylated on Ser 45 by ERK1/2 and Set 59 by the p38 MAPK substrate, MAPKAPK-2. Translocation and phosphorylation of αBC was determined in cytosolic and cytoskeletal fractions by 1D SDS-PAGE and IEF, or using Ser 45 and Set 59 phospho-specific antibodies in: (1) control rabbit cardiomyocytes; (2) cells preconditioned by 10 min in vitro ischemia; or after pre-treatment with specific inhibitors of (3) Ser/Thr protein phosphatase 1/2A (calyculin A); (4) p38 MAPK (SB203580); or (5) ERK 1/2 (PD98059); all prior to 180 min ischemia. Ischemia induced a cytosolic to cytoskeletal translocation of αBC, which was similar in all the groups. Highly phosphorylated isoforms (D1/2) of αBC were present in cytosolic but not cytoskeletal fractions at 0 min ischemia. By 60-90 min ischemia. D1/2 isoforms had translocated to the cytoskeletal fraction. Calyculin A maintained D1/2 levels throughout prolonged ischemia. SB203580 decreased αBC phosphorylation. Neither PD98059 nor IPC altered αBC phosphorylation during prolonged ischemia. It is concluded that αBC phosphorylation during ischemia is regulated by p38 MAPK but not by ERK 1/2. The inability to detect a correlation between IPC protection and either αBC translocation or phosphorylation suggests that the proteins in the highly phosphorylated isoform bands of αBC quantitated in this study are not protective end effectors of classical IPC.
480

Casein Kinase 1 Alpha Associates With the Tau-Bearing Lesions of Inclusion Body Myositis

Kannanayakal, Theresa, Mendell, Jerry R., Kuret, Jeff 31 January 2008 (has links)
Inclusion body myositis and Alzheimer's disease are age-related disorders characterized in part by the appearance of intracellular lesions composed of filamentous aggregates of the microtubule-associated protein tau. Abnormal tau phosphorylation accompanies tau aggregation and may be an upstream pathological event in both diseases. Enzymes implicated in tau hyperphosphorylation in Alzheimer's disease include members of the casein kinase 1 family of phosphotransferases, a group of structurally related protein kinases that frequently function in tandem with the ubiquitin modification system. To determine whether casein kinase 1 isoforms associate with degenerating muscle fibers of inclusion body myositis, muscle biopsy sections isolated from sporadic disease cases were subjected to double-label fluorescence immunohistochemistry using selective anti-casein kinase 1 and anti-phospho-tau antibodies. Results showed that the alpha isoform of casein kinase 1, but not the delta or epsilon isoforms, stained degenerating muscle fibers in all eight inclusion body myositis cases examined. Staining was almost exclusively localized to phospho-tau-bearing inclusions. These findings, which extend the molecular similarities between inclusion body myositis muscle and Alzheimer's disease brain, implicate casein kinase 1 alpha as one of the phosphotransferases potentially involved in tau hyperphosphorylation.

Page generated in 0.1068 seconds