• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Ischemic β-Dystroglycan (βDG) Degradation Product: Correlation With Irreversible Injury in Adult Rabbit Cardiomyocytes

Armstrong, Stephen C., Latham, Carole A., Ganote, Charles E. 01 January 2003 (has links)
A loss of sarcolemmal dystrophin was observed by immuno-fluorescence studies in rabbit hearts subjected to in situ myocardial ischemia and by immuno-blotting of the Triton soluble membrane fraction of isolated rabbit cardiomyocytes subjected to in vitro ischemia. This ischemic loss of dystrophin was a specific event in that no ischemic loss of sarcolemmal α-sarcoglycan, γ-sarcoglycan, αDG, or βDG was observed. The maintenance of sarcolemmal βDG (43 Kd) during ischemia was interesting in that dystrophin binds to the C-terminus of βDG. However, during late in vitro ischemia, a 30 Kd band was observed that was immuno-reactive for βDG. Additionally, this 30 Kd-βDG band was observed in rabbit myocardium subjected to autolysis. Finally, the 30 Kd-βDG was observed in the purified sarcolemmal fraction of rabbit cardiomyocytes subjected to a prolonged period of in vitro ischemia, confirming the sarcolemmal localization of this band. The potential patho-physiologic significance of this band was indicated by the appearance of this band at 120-180 min of in vitro ischemia, directly correlating with the onset of irreversible injury, as manifested by osmotic fragility. Additionally the appearance of this band was significantly reduced by the endogenous cardioprotective mechanism, in vitro ischemic preconditioning, which delays the onset of osmotic fragility. In addition to dystrophin, βDG binds caveolin-3 and Grb-2 at its C-terminus. The presence of Grb-2 and caveolin-3 in the membrane fractions of oxygenated and ischemic cardiomyocytes was determined by Western blotting. An increase in the level of membrane Grb-2 and caveolin-3 was observed following ischemic preconditioning as compared to control cells. The formation of this 30 Kd-βDG degradation product is potentially related to the transition from the reversible to the irreversible phase of myocardial ischemic cell injury and a decrease in 30 Kd-βDG might mediate the cardioprotection provided by ischemic preconditioning.
2

Effects of Cccp-Induced Mitochondrial Uncoupling and Cyclosporin a on Cell Volume, Cell Injury and Preconditioning Protection of Isolated Rabbit Cardiomyocytes

Ganote, Charles E., Armstrong, Stephen C. 01 July 2003 (has links)
Cell swelling may contribute to acute cell injury subsequent to ischemia/reperfusion. The potential role of mitochondrial uncoupling and the resultant mitochondrial swelling, due to opening of the mitochondrial permeability transition pore (MPTP), were examined in an in vitro ischemically pelleted isolated rabbit cardiomyocyte model using the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) to uncouple mitochondria. Cyclosporin A (CsA) was employed to inhibit MPTP opening. Cell volume was determined by a cell-flotation, density-gradient assay, using bromododecane. Cell viability, subsequent to an osmotic stress, was determined by trypan blue permeability. Ischemic preconditioning (IPC) facilitated volume regulation following an osmotic stress. Ischemic-cell swelling was reduced by IPC. IPC protected ischemically pelleted cells, but CsA had no significant effects on injury or IPC protection. CCCP ischemia accelerated rates of ischemic contracture and injury, and abolished IPC protection. IPC protection was restored by CsA. In CCCP-ischemic-uncoupled cells, subjected to a reduced (170 mOsm) osmotic stress, CsA and IPC afforded independent and additive protection. Chelerythrine and 5-hydroxydecanoate (5-HD) blocked IPC, but did not reduce CsA protection. Electron microscopy confirmed that CCCP ischemia induced mitochondrial matrix swelling that was reduced by CsA. Cardioprotection by IPC and CsA was accompanied by proportional reductions in cell swelling. Morphometric analysis of the electron photomicrographs demonstrated that the mitochondrial volume fractions were significantly reduced in the CsA/CCCP (29.8 ± 2.3%, P < 0.004) and IPC/CsA/CCCP (31.5 ± 1.7%, P < 0.0008) groups as compared to the CCCP-ischemic group (40.5 ± 1.7%) The IPC/CCCP group (39.5 ± 4.2%) was not significantly different from the CCCP-ischemic group. NIM 811, a CsA analogue MPTP blocker with no calcineurin inhibitory activity, afforded protection similar to CsA. The results suggest that CsA protection may, in part, be mediated by reduction of mitochondrial swelling.
3

Differential Translocation or Phosphorylation of Alpha B Crystallin Cannot Be Detected in Ischemically Preconditioned Rabbit Cardiomyocytes

Armstrong, Stephen C., Shivell, Christine L., Ganote, Charles E. 01 January 2000 (has links)
Alpha B Crystallin (αBC) is a putative effector protein of ischemic preconditioning (IPC). that is phosphorylated on Ser 45 by ERK1/2 and Set 59 by the p38 MAPK substrate, MAPKAPK-2. Translocation and phosphorylation of αBC was determined in cytosolic and cytoskeletal fractions by 1D SDS-PAGE and IEF, or using Ser 45 and Set 59 phospho-specific antibodies in: (1) control rabbit cardiomyocytes; (2) cells preconditioned by 10 min in vitro ischemia; or after pre-treatment with specific inhibitors of (3) Ser/Thr protein phosphatase 1/2A (calyculin A); (4) p38 MAPK (SB203580); or (5) ERK 1/2 (PD98059); all prior to 180 min ischemia. Ischemia induced a cytosolic to cytoskeletal translocation of αBC, which was similar in all the groups. Highly phosphorylated isoforms (D1/2) of αBC were present in cytosolic but not cytoskeletal fractions at 0 min ischemia. By 60-90 min ischemia. D1/2 isoforms had translocated to the cytoskeletal fraction. Calyculin A maintained D1/2 levels throughout prolonged ischemia. SB203580 decreased αBC phosphorylation. Neither PD98059 nor IPC altered αBC phosphorylation during prolonged ischemia. It is concluded that αBC phosphorylation during ischemia is regulated by p38 MAPK but not by ERK 1/2. The inability to detect a correlation between IPC protection and either αBC translocation or phosphorylation suggests that the proteins in the highly phosphorylated isoform bands of αBC quantitated in this study are not protective end effectors of classical IPC.
4

Sarcolemmal Blebs and Osmotic Fragility as Correlates of Irreversible Ischemic Injury in Preconditioned Isolated Rabbit Cardiomyocytes

Armstrong, Stephen C., Shivell, Christine L., Ganote, Charles E. 01 January 2001 (has links)
The hypothesis that irreversible ischemic injury is related to sub-sarcolemmal blebbing and an inherent osmotic fragility of the blebs was tested by subjecting isolated control and ischemically preconditioned (IPC) or calyculin A (CalA)-pretreated (protected) rabbit cardiomyocytes to ischemic pelleting followed by resuspension in 340, 170 or 85 mosmol medium containing trypan blue. At time points from 0-240 min, osmotic fragility was assessed by the percentage of trypan blue permeable cells. Membrane blebs were visualized with India ink preparations. Bleb formation, following acute hypo-osmotic swelling, developed by 75 min and increased with longer periods of ischemia. Osmotic fragility developed only after 75 min. Cells resuspended in 340 mosmol media did not form blebs and largely retained the ability to exclude trypan blue, even after 240 min ischemia. Although the latent tendency for osmotic blebbing preceded the development of osmotic fragility, most osmotically fragile cells became permeable without evident sarcolemmal bleb formation. The onset of osmotic fragility was delayed in protected cells, but protection did not reduce the bleb formation. It is concluded that blebbing and osmotic fragility are independent manifestations of ischemic injury. The principal locus of irreversible ischemic injury and the protection provided by IPC may lie within the sarcolemma rather than at sarcolemmal attachments to underlying adherens junctions.
5

Translocation of PKC, Protein Phosphatase Inhibition and Preconditioning of Rabbit Cardiomyocytes

Armstrong, Stephen C., Hoover, Donald B., Delacey, Martha H., Ganote, Charles E. 01 January 1996 (has links)
This study was designed to test the hypothesis that induction of the preconditioned state results in a sustained translocation of protein kinase C (PKC) which accounts for the memory associated with preconditioning. Isolated rabbit cardiomyocytes were subjected to established preconditioning protocols using either adenosine or transient ischemia. At timed intervals during induction of preconditioning (PC), post-incubation or final sustained ischemia, cells were harvested, subjected to digitonin lysis and separated into cytosolic and particulate fractions. Samples were evaluated by Western blot analysis with monoclonal antibodies to alpha, epsilon, zeta and gamma PKC isozymes, and bands were quantified by densitometry. Internal controls for each experiment included oxygenated cardiomyocytes and cells with PKC translocation evoked by treatment with phorbol 12-myristate 13-acetate (PMA). For control oxygenated cells, the particulate fraction contained about 30% of PKC epsilon, 5-10% of PKC alpha and 60-70% of PKC zeta. Preconditioning with adenosine (100 μM) or 10 min ischemia had no significant effect on these percentages. Furthermore, the relative amounts of the PKC isozymes associated with the particulate fraction of control and preconditioned cells did not differ after a post-incubation in oxygenated buffer or during a final ischemic incubation. PMA and ingenol completely translocated the epsilon and alpha isoforms, while thymeleatoxin totally translocated PKC alpha but only partially (50%) translocated PKC epsilon. The distribution of PKC zeta between fractions was not affected by any drug, The protein phosphatase inhibitor calyculin A protected cells mimicking preconditioning. This protection was blocked by preincubation with the selective PKC inhibitor calphostin C but was largely retained if calphostin C was added only during the final ischemic period. It is concluded that PKC activity is required for preconditioning, but a sustained translocation of PKC above basal levels is not necessary for protection of rabbit cardiomyocytes in vitro.
6

Die Wirkung von plättchenaktivierendem Faktor (PAF) auf intrazelluläre Kalziumkonzentration und Kontraktilität isolierter adulter Kardiomyozyten der Ratte

Hunger, Thomas 15 January 2001 (has links)
Es wurden die Effekte von Plättchenaktivierendem Faktor (PAF, 1-O-Alkyl-2-azetyl-sn-glyzero-3-phosphocholin) auf intrazelluläre Kalziumkonzentration und Zelllänge isolierter und feldstimulierter Kardiomyozyten der Ratte untersucht. Intrazelluläre Kalziumkonzentration und Zelllänge der feldstimulierten Zellen wurden mittels Laser-Raster-Mikroskopie simultan unter Verwendung des Kalzium-Fluoreszenzfarbstoffes Fluo-3 bestimmt. PAF (0.001nM - 10nM) inhibierte den systolischen Anstieg der intrazellulären Kalziumkonzentration zeit- und konzentrationsabhängig. Die maximalen Effekte wurden nach einer Inkubationszeit von 6-8 min beobachtet. Es kam zu 17% (0.001nM), 41% (0.1nM) und 52% (10nM PAF) Reduktion des systolischen Kalziumanstiegs. Zusätzlich konnte eine zeit- und konzentrationsabhängige Verringerung der simultan gemessenen Zellverkürzung nachgewiesen werden. Die Zellverkürzung war nach einer Inkubationszeit von 8 min um 10% (0.001nM), 32% (0.1nM) und 50% (10nM PAF) reduziert. Die Wirkungen von PAF konnten durch den Einsatz des spezifischen PAF-Rezeptorantagonisten WEB 2170 inhibiert werden. Diese Ergebnisse zeigen einen rezeptorvermittelten negativ inotropen Effekt von PAF, hervorgerufen durch eine Verringerung der systolischen intrazellulären Kalziumkonzentration ohne Desensibilisierung der Myofilamente. / We investigated the effects of platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) on intracellular calciumconcentration and cell length in isolated and field-stimulated rat cardiomyocytes. Intracellular calciumconcentration and cell length of field-stimulated cells were determined simultaneously by confocal laser scan microscopy by using the fluorescent calcium dye Fluo-3. PAF (0.001nM - 10nM) inhibited systolic intracellular calciumconcentration increase in a time- and concentration-dependent manner. Maximal effects were observed after an incubation time of 6-8 min, resulting in a 17% (0.001nM), 41% (0.1nM) and 52% (10nM PAF) inhibiton of systolic calcium increase. A time- and concentration-dependent decrease in simultaneously measured cell shortening also was demonstrated. Cell shortening was inhibited by 10% (0.001nM), 32% (0.1nM) and 50% (10nM PAF) after an incubation time of 8 min. The effects of PAF could be antagonized by the PAF-receptor antagonist WEB 2170. These data demonstrate that PAF receptor-dependently induces a negativ inotropic effect, which is correlated with a decrease in systolic intracellular calciumconcentration and is most likely not due to a decrease in myofilament sensitivity.
7

Das Kontraktionsverhalten isolierter humaner Kardiomyozyten unter den Bedingungen der primären Zellkultur und des virusvermittelten Gentransfers:Einfluß von Frequenzänderung, ß-adrenerger Stimulation und Änderung der extrazellulären Calcium-Konzentration / Contractile behavior of human isolated myocytes under the conditions of cell culture and adenovirus-mediated gene transfer: effects of increasing stimulation rates, ß-adrenergic stimulation and changes in extracellular calcium

Seehase, Elke Barbara 16 January 2012 (has links)
No description available.
8

Comparison of in Vitro Preconditioning Responses of Isolated Pig and Rabbit Cardiomyocytes: Effects of a Protein Phosphatase Inhibitor, Fostriecin

Armstrong, S. C., Kao, R., Gao, W., Shivell, L. C., Downey, J. M., Honkanen, R. E., Ganote, C. E. 01 January 1997 (has links)
Calcium tolerant pig and rabbit cardiomyocytes were isolated using retrograde aortic perfusion of nominally calcium-free collagenase. Preconditioning protocols used 1 or 3 x l0-min episodes of ischemic pelleting or pre-incubation with 100 μM adenosine, followed by a 15-min post-incubation and 180-240-min ischemic pelleting. Control cells were incubated and washed in parallel with the experimental groups. Injury was assessed by determination of cell morphology, trypan blue permeability following osmotic swelling, lactate and HPLC analysis of adenine nucleotides. Preconditioned pig cardiomyocytes had a reduced rate of ischemic contracture, but protection occurred without conservation of ATP. Preconditioned rabbit cardiomyocytes were protected without significant changes in rates of ischemic contracture or ATP depletion. Incubation of ischemic cells with the protein phosphatase inhibitor, fostriecin, at PP2A-selective concentrations (0.1-10 μM), mimicked preconditioning in both rabbit and pig cardiomyocytes. In rabbits, the K(ATP) channel blocker, 5-hydroxydecanoate (5-HD), did not block preconditioning or fostriecin protection. In the pig, 5-HD blocked both preconditioning and fostriecin protection, with return of the rates of ischemic contracture to control. However, 5-HD was an effective blocker of protection only in early ischemia. Fostriecin mimicked preconditioning in the rabbit and the early responses of the preconditioned pig. Preconditioning appears associated with protein phosphorylation in both the rabbit and the pig, but major pathways leading to protection may differ in the two species.

Page generated in 0.0131 seconds