• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Promoting restorative neural plasticity with motor cortical stimulation after stroke-like injury in rats.

O'Bryant, Amber Jo 18 November 2011 (has links)
In adult rats, following unilateral stroke-like injury to the motor cortex, there is significant loss of function in the forelimb contralateral to the ischemic damage. In the remaining motor cortex, changes in neuronal activation patterns and connectivity are induced following motor learning and rehabilitation in the brains of adult animals. Rehabilitative training promotes functional recovery of the impaired forelimb following motor cortical strokes; however, its benefits are most efficacious when coupled with other rehabilitative treatments. Multiple lines of evidence suggest that focal cortical electrical stimulation (CS) enhances the effectiveness of rehabilitative training (RT) and promotes changes in neural activation and plasticity in the peri-lesion motor cortex. Specific examples of plastic events include increases in dendritic and synaptic density in the peri-lesion cortex following CS/RT compared to rehabilitative training alone. The objective of these studies was to investigate which conditions, such as timing and method of delivery of CS, when coupled with RT, are most efficacious in promoting neuronal plasticity and functional recovery of the impaired forelimb following ischemic cortical injury in adult animals. The central hypothesis of these dissertation studies is that, following unilateral stroke-like injury, CS improves the functional recovery of the impaired forelimb and promotes neural plasticity in remaining motor cortex when combined with RT. This hypothesis was tested in a series of experiments manipulating post-ischemic behavioral experience with the impaired forelimb. Adult rats were proficient in a motor skill (Single Pellet Retrieval Task) and received ischemic motor cortex lesion that caused impairments in the forelimb. Rats received daily rehabilitative training on a tray reaching task with or without concurrent cortical stimulation. Epidural cortical stimulation, when paired with rehabilitative training, resulted in enhanced reaching performance compared to RT alone when initiated 14 days after lesion. These results were found to be maintained well after the treatment period ended. Rats tested 9-10 months post-rehabilitative training on the single pellet retrieval task continued to have greater reaching performance compared to RT alone. However, delayed onset of rehabilitative training (3 months post-infarct) indicated that CS does not further improve forelimb function compared to RT along. It was further established that CS delivered over the intact skull (transcranial stimulation) of the lesioned motor cortex was not a beneficial adjunct to rehabilitative training. Together these dissertation studies provide insight into the effectiveness and limitations of CS on behavioral recovery. The findings in these studies are likely to be important for understanding how post-stroke behavioral interventions and adjunct therapies could be used to optimize brain reorganization and functional outcome. / text
2

Concentration-Response Relationships for Adenosine Agonists During Preconditioning of Rabbit Cardiomyocytes

Rice, Peter J., Armstrong, Stephen C., Ganote, Charles E. 01 January 1996 (has links)
Although adenosine receptors have been implicated in the induction of preconditioning in a variety of experimental models, there is controversy concerning the specific adenosine receptor subtypes mediating this effect. Concentration-protection relationships for adenosine and adenosine agonists in rabbit cardiomyocytes were used to characterize the role of adenosine receptor subtypes in preconditioning. Isolated cells were ischemically preconditioned or pre-incubated for 10 min with increasing concentrations of adenosine, CCPA (2-chloro-N6-cyclopentyladenosine) APNEA (N6-2-(4-aminophenyl)ethyladenosine), or BNECA (N6-benzyl-5'-N-ethyl-carboxamidoadenosine) in the presence or absence of 1 or 10 μM of the selective A1-adenosine antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine). Following a 30-min post-incubation period, cells were pelleted, layered with oil and ischemically incubated for 180 min. Injury was assessed by osmotic swelling and trypan blue exclusion of sequential samples, and determination of the areas beneath the mortality curves. Adenosine produced a broad concentration-protection curve which was displaced to the right by DPCPX. The curve for A1-selective agonist CCPA was biphasic, with an initial response below 1 nM and a second above 1 μM. DPCPX abolished the early response leaving a steep monophasic curve between 0.1 and 10 μM CCPA. The APNEA curve appeared monophasic, the major slope occurring between 1-100 nM; DPCPX (1 μM) shifted the concentration-response curve ≃ 30-fold and decreased the slope. Adenosine receptor agonist BNECA produced preconditioning characterized by a shallow monophasic concentration-protection curve with a maximal effect of 49% and an EC50 of ≃ 5 nM; DPCPX shifted the BNECA concentration-protection relationship ≃ 40-fold with only a modest increase in slope. Analysis of the data suggests that induction of preconditioning results from interaction of agonists with the A1 receptor and a second adenosine receptor having properties consistent with the A3 receptor. Adenosine, CCPA, APNEA, BNECA and DPCPX each appear to be selective for the A1 adenosine receptor subtype in isolated rabbit cardiomyocytes.
3

Role of ATF4 in Neuronal Death Mediated by DNA Damage, Endoplasmic Reticulum Stress and Ischemia-Hypoxia

Galehdar, Zohreh 05 November 2013 (has links)
An increasing body of evidence points to a key role of endoplasmic reticulum (ER) stress in chronic and acute neurodegenerative diseases. Indeed, markers of ER stress are common features of neurons destined to die in these conditions. In the present study we demonstrate that PUMA, a BH3-only member of the Bcl-2 family is essential for ER stress-induced cell death. PUMA is known to be a key transcriptional target of p53, however we have found that ER stress triggers PUMA induction and cell death through a p53-independent mechanism involving instead the ER stress inducible transcription factor ATF4. Specifically, we demonstrate that ectopic expression of ATF4 sensitizes neurons to ER stress induced apoptosis, and that ATF4-deficient neurons exhibit markedly reduced levels of PUMA expression and cell death. However, chromatin immunoprecipitation experiments suggest that ATF4 does not directly regulate the PUMA promoter. Rather, we found that ATF4 induces expression of the transcription factor CHOP, and that CHOP in turn directly activates PUMA induction. Specifically, we demonstrate that CHOP binds to the PUMA promoter during ER stress and that CHOP knockdown attenuates PUMA induction and neuronal apoptosis. In summary, we have identified a key signaling pathway in ER stress induced neuronal death involving ATF4-CHOP mediated transactivation of the pro-apoptotic Bcl-2 family member PUMA. Protein aggregates and markers of ER stress response have also been observed in dying neurons in several animal models of cerebral ischemia. Therefore, to decipher the significance of the ER stress apoptotic response, we investigate the role of ATF4-CHOP signaling pathway in ischemic neuronal injury. Ischemic stroke results from a transient or permanent reduction in cerebral blood flow in the brain. In spite of much research in trying to develop therapeutic strategies, most clinical trials have failed. These failures demonstrate that effective treatments require a more complete understanding of molecular signals that lead to neuronal death. However, stroke is a complex scenario since distinct mechanisms may involve in rapid and/or delayed neuronal death. The signaling pathways regulating these mechanisms however are not fully defined. Previous studies had suggested that ER stress playing a pivotal role in post-ischemic neuronal death. Yet, the relevance of ER stress signals was not fully known in ischemic neuronal injury. Accordingly, this thesis research attempts to explore the functional role of ER stress -inducible pathway, ATF4-CHOP axis, in different models of neuronal death (delayed and excitotoxic cell death) evoked by ischemia. The data indicates that ATF4 is essential in delayed type of death in vitro. In focal ischemia model (tMCAO) ATF4 also plays a role as a mediator of death signal in vivo. However, CHOP function looks more complex, and our data did not support the role of CHOP in ischemic neuronal death.
4

Role of ATF4 in Neuronal Death Mediated by DNA Damage, Endoplasmic Reticulum Stress and Ischemia-Hypoxia

Galehdar, Zohreh January 2013 (has links)
An increasing body of evidence points to a key role of endoplasmic reticulum (ER) stress in chronic and acute neurodegenerative diseases. Indeed, markers of ER stress are common features of neurons destined to die in these conditions. In the present study we demonstrate that PUMA, a BH3-only member of the Bcl-2 family is essential for ER stress-induced cell death. PUMA is known to be a key transcriptional target of p53, however we have found that ER stress triggers PUMA induction and cell death through a p53-independent mechanism involving instead the ER stress inducible transcription factor ATF4. Specifically, we demonstrate that ectopic expression of ATF4 sensitizes neurons to ER stress induced apoptosis, and that ATF4-deficient neurons exhibit markedly reduced levels of PUMA expression and cell death. However, chromatin immunoprecipitation experiments suggest that ATF4 does not directly regulate the PUMA promoter. Rather, we found that ATF4 induces expression of the transcription factor CHOP, and that CHOP in turn directly activates PUMA induction. Specifically, we demonstrate that CHOP binds to the PUMA promoter during ER stress and that CHOP knockdown attenuates PUMA induction and neuronal apoptosis. In summary, we have identified a key signaling pathway in ER stress induced neuronal death involving ATF4-CHOP mediated transactivation of the pro-apoptotic Bcl-2 family member PUMA. Protein aggregates and markers of ER stress response have also been observed in dying neurons in several animal models of cerebral ischemia. Therefore, to decipher the significance of the ER stress apoptotic response, we investigate the role of ATF4-CHOP signaling pathway in ischemic neuronal injury. Ischemic stroke results from a transient or permanent reduction in cerebral blood flow in the brain. In spite of much research in trying to develop therapeutic strategies, most clinical trials have failed. These failures demonstrate that effective treatments require a more complete understanding of molecular signals that lead to neuronal death. However, stroke is a complex scenario since distinct mechanisms may involve in rapid and/or delayed neuronal death. The signaling pathways regulating these mechanisms however are not fully defined. Previous studies had suggested that ER stress playing a pivotal role in post-ischemic neuronal death. Yet, the relevance of ER stress signals was not fully known in ischemic neuronal injury. Accordingly, this thesis research attempts to explore the functional role of ER stress -inducible pathway, ATF4-CHOP axis, in different models of neuronal death (delayed and excitotoxic cell death) evoked by ischemia. The data indicates that ATF4 is essential in delayed type of death in vitro. In focal ischemia model (tMCAO) ATF4 also plays a role as a mediator of death signal in vivo. However, CHOP function looks more complex, and our data did not support the role of CHOP in ischemic neuronal death.
5

Increased Oligodendrogenesis by Humanin Promotes Axonal Remyelination and Neurological Recovery in Hypoxic/Ischemic Brains

Chen, Jing, Sun, Miao, Zhang, Xia, Miao, Zhigang, Chua, Balvin H.L., Hamdy, Ronald C., Zhang, Quan Guang, Liu, Chun Feng, Xu, Xingshun 01 January 2015 (has links)
Oligodendrocytes are the predominant cell type in white matter and are highly vulnerable to ischemic injury. The role of oligodendrocyte dysfunction in ischemic brain injury is unknown. In this study, we used a 24-amino acid peptide S14G-Humanin (HNG) to examine oligodendrogenesis and neurological functional recovery in a hypoxic/ischemic (H/I) neonatal model. Intraperitoneal HNG pre-treatment decreased infarct volume following H/I injury. Delayed HNG treatment 24 h after H/I injury did not reduce infarct volume but did decrease neurological deficits and brain atrophy. Delayed HNG treatment did not attenuate axonal demyelination at 48 h after H/I injury. However, at 14 d after H/I injury, delayed HNG treatment increased axonal remyelination, the thickness of corpus callosum at the midline, the number of Olig2+/BrdU+ cells, and levels of brain-derived neurotrophic factor (BDNF). Our results suggest that targeting oligodendrogenesis via delayed HNG treatment may represent a promising approach for the treatment of stroke.
6

Protein Phosphatase Inhibitors Calyculin a and Fostriecin Protect Rabbit Cardiomyocytes in Late Ischemia

Armstrong, Stephen C., Gao, W., Lane, J. R., Ganote, C. E. 01 January 1998 (has links)
Calcium-tolerant rabbit cardiomyocytes were isolated using retrograde aortic perfusion with a nominally calcium-free, collagenase buffer. In vitro ischemic preconditioning was induced by a 10-min episode of ischemic pelleting, followed by a 15-min post-incubation and a prolonged period of ischemic pelleting. Injury was assessed by determination of cell contracture and trypan blue permeability following hypotonic swelling and correlated with metabolic assays of lactate and adenine nucleotides. The protein phosphatase PP1/2A inhibitor calyculin A and PP2A-selective fostriecin protected isolated rabbit cardiomyocytes from lethal injury after a 10-min pre-incubation and when added late into ischemic pellets after a delay of 75 min. At the time of late drug addition, cells were severely ATP-depleted and in rigor contracture. Protection with Calyculin A from 1 nM to 1 μM was dose-related. Cells pre-incubated with 10 nM to 10 μM fostriecin 10 min prior to ischemic pelleting were protected with an EC50 approximating 71 nM, implying protection at a PP2A-selective dose. The selective protein kinase C inhibitor, calphostin C, blocked ischemic preconditioning protection but not protection from 1 μM calyculin A. Protection of severely ischemic cardiomyocytes following protein phosphatase inhibition appears not to require PKC activity or ATP conservation. Pre-incubation of cells with calyculin A induced high levels of phosphorylation in p38 mitogen activated protein kinase (MAPK), as compared to the ischemia-induced phosphorylation observed in the untreated group only at 30 min of ischemia, providing evidence of protein phosphatase activity in cardiomyocytes. Pharmacological protection in late ischemia has been demonstrated, but the mechanism of protection is undetermined.
7

Preconditioning of Isolated Rabbit Cardiomyocytes: No Evident Separation of Induction, Memory and Protection

Armstrong, Stephen C., Hoover, D. B., Shivell, L. C., Ganote, C. E. 01 January 1997 (has links)
Cardiomyocytes isolated from rabbit hearts were preconditioned in vitro by 10 min of ischemia or treatment with 100 μM adenosine. Protection was assessed as average integrated mortality following osmotic swelling and determination of viability by trypan blue exclusion over 60-180 min ischemia. Repetitive submaximal stimulations with 1 μM adenosine amplified the protective response. Treatment with adenosine only at the onset of prolonged ischemia afforded a dose-dependent protection. The PKC inhibitor calphostin C (500 nM) blocked preconditioning and, when added during ischemic incubation of non-preconditioned cells, significantly increased injury. The memory of adenosine-induced preconditioning decayed over a 60 min post-incubation period. Light activation of calphostin C initially added to preconditioned ischemic cells in the dark indicated that a 10 min period of PKC activity at the onset of ischemia affords full protection. The reversible PKC inhibitors chelerythrine (5 μM) or staurosporine (100 nM) added only to bracket induction of ischemia, reduced but did not abolish protection. Protection was abolished when either drug was present during induction and a subsequent 30 min post-incubation period. Staurosporine included during initiation and post-incubation but washed out in the final 5 min of post-incubation allowed significant protection to occur. It is concluded that a single adenosine receptor-stimulation induces protection as it preconditions, and PKC activity appears to be required for both induction and protection. Memory may reside in post-receptor amplification of an initial protective response.
8

Flow Cytometric Analysis of Isolated Adult Cardiomyocytes: Vinculin and Tubulin Fluorescence During Metabolic Inhibition and Ischemia

Armstrong, Stephen C., Ganote, Charles E. 01 January 1992 (has links)
Immunofluorescence and quantitative flow cytometry was used to determine if alterations in cytoskeletal proteins (vinculin and tubulin) occur during metabolic inhibition and ischemic incubation of isolated adult rat cardiomyocytes. Effects of cell shape changes on fluorescence, were controlled for by the contractile inhibitor, butanedione monoxime (BDM) and gated analysis. Flow cytometry differentiated rod- and round-shaped myocytes on the basis of forward and side scattering. Severe contracture of metabolically inhibited (iodoacetic acid and amytal) myocytes caused an artefactual increase in fluorescence intensity and a redistribution of tubulin into microblebs on the cell surface, which tended to mask specific losses of fluorescence. Fluorescence microscopy showed that round cells stained intensely for vinculin, but not for tubulin and that vinculin redistributed into coarse patches between 60 and 90 min, times which corresponded to small rebounds of fluorescence. With gated analysis, to exclude severely contracted round and squared cells, and with BDM inhibition of contracture, both metabolically inhibited and ischemic pelleted myocytes showed an early decrease in specific immunofluorescence staining for tubulin and vinculin, which preceded loss of cell viability, as determined by trypan blue staining. In both ischemic and metabolically inhibited cells, decreases of vinculin fluorescence preceded or coincided with increasing osmotic fragility. It is concluded that early cytoskeletal alterations of vinculin in ischemic and anoxic injury correlate with the development of osmotic fragility and irreversible myocyte injury.
9

Effects of 2,3-Butanedione Monoxime (BDM) on Contracture and Injury of Isolated Rat Myocytes Following Metabolic Inhibition and Ischemia

Armstrong, Stephen C., Ganote, Charles E. 01 January 1991 (has links)
The relationship between myocardial cell contracture and injury during total metabolic inhibition (amylobarbital and iodacetic acid) and ischemia was examined, using 5-50 mm butanedione monoxime (BDM) as an inhibitor of contracture. BDM had no apparent effect on control myocytes during 180 min incubations, but inhibited contracture following anoxia or ischemia in a dose-dependent fashion, as directly quantitated by length/width ratios. Cellular ATP levels decreased at a similar rate in the absence or presence of BDM, following metabolic inhibition. BDM-mediated inhibition of contracture was associated with accelerated cell injury, as defined by: the uptake of an extracellular marker (trypan blue) by the cardiomyocytes, by direct analysis of myoglobin released into the supernatant and by ultrastructural demonstration of defects in sarcolemmal membrane integrity. Calcium was not required for BDM's enhancement of injury, in that cells incubated in calcium free-EGTA buffer showed a similar BDM-mediated acceleration of injury. In the presence or absence of calcium, enhancement of injury was more marked in cells osmotically stressed with a brief incubation in hypotonic buffer, than in cells resuspended in isotonic media. It is concluded that BDM enhances development of osmotic fragility of inhibited or ischemic cardiomyocytes and that contracture is not a necessary contributing factor to myocardial cell death.
10

Layer 3 pyramidal neurons of rhesus monkeys in aging and after ischemic injury

Chang, Wayne Wei-En 23 January 2023 (has links)
Layer 3 (L3) pyramidal neurons are involved in intrinsic and extrinsic corticocortical communications that are integral to area specific cortical functions. The functional and morphological properties of these neurons are altered in the lateral prefrontal cortex (LPFC) of aged rhesus monkeys, changes which parallel the decline of working memory (WM) function. What is not yet understood is the time course of these neuronal alternations during the aging process, or the impact of neuronal changes on the function of local networks that underlie WM. By comparing the properties of L3 pyramidal neurons from the LPFC of behaviorally characterized rhesus monkeys over the adult lifespan using whole cell patch clamp recordings and neuronal reconstructions, the present dissertation demonstrates that WM impairment, neuronal hyperexcitabilty and spine loss begin in middle age. We use bump attractor models to predict how empirically observed changes affect performance on the Delayed Response Task and Delayed Recognition Span Task (spatial). The performance of both models is affected much more by neuronal hyperexcitability than by synapse loss. In a separate study, we examine pathological changes of L3 pyramidal neurons in the perilesional ventral premotor cortex following acute ischemic injury to the primary motor cortex. Neurons from lesioned monkeys exhibit hyperexcitability and changes the excitatory:inhibitory synaptic balance in favor of inhibition. As oxidative stress and inflammation are known to exacerbate both age-related and injury-induced neuronal pathology, we characterize neuronal properties in both conditions after administering therapeutic interventions which target inflammatory pathways and which have previously been shown to ameliorate behavioral deficits. Chronic dietary curcumin treatment dampens neuronal hyperexcitability in middle-aged subjects, but the neuronal changes are not correlated with WM improvements. Treatment with mesenchymal-derived extracellular vesicles lowers firing rates and restores excitatory:inhibitory synaptic balance, and importantly, these changes correlate significantly with motor function.

Page generated in 0.0472 seconds