• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure and regulation of yeast glycogen synthase

Baskaran, Sulochanadevi 15 October 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glycogen is a major energy reserve in most eukaryotes and its rate of synthesis is controlled by glycogen synthase. The activity of eukaryotic glycogen synthase is regulated by the allosteric activator glucose-6-phosphate, which can overcome the inhibitory effects of phosphorylation. The effects of phosphorylation and glucose-6-phosphate on glycogen synthase are mediated by a cluster of six arginines located within a stretch of 12 amino acids near the C-terminus of the enzyme’s polypeptide chain. We studied isoform-2 of yeast glycogen synthase as a model to study the structural and molecular mechanisms that underlie the regulation of the eukaryotic enzymes and our primary tools of investigation were macromolecular X-ray crystallography, site-directed mutagenesis, intein-mediated peptide ligation and enzyme assays. We have solved the tetrameric structure of the yeast enzyme in two different activity states; the resting enzyme and the activated state when complexed with glucose-6-phosphate. Binding of glucose-6-phosphate to glycogen synthase induces large conformational changes that free the active site of the subunits to undergo conformational changes necessary to catalyze the reaction. Further, using site directed mutagenesis and intein-mediated peptide ligation to create specific phosphorylation states of the enzyme we were able to define specific roles for the arginine residues that mediate the regulatory effects of phosphorylation and glucose-6-phosphate activation. Based on these studies, we propose a three state structural model for the regulation of the enzyme, which relate the observed conformational states to specific activity levels. In addition to these regulatory studies, we have also solved the structure of the enzyme complexed with UDP and with substrate analogs, which provide detailed insight into the catalytic mechanism of the enzyme and the ability of glycogen synthase to remain tightly bound to its substrate glycogen.
2

Manganese-Dependent Serine/Threonine/Tyrosine Kinase From Arabidopsis Thaliana : Role Of Serine And Threonine Residues In The Regulation Of Kinase Activity

Reddy, Mamatha M 08 1900 (has links)
Protein phosphorylation is an important post-translational modification of proteins, which can either activate or inhibit the function of a given protein. The enzymes, protein kinases and protein phosphatases catalyze the phosphorylation and dephosphorylation of target proteins, respectively. Protein kinases catalyze the transfer of γ-phosphate from ATP to serine, threonine or tyrosine residues in target proteins. They are traditionally classified as protein serine/threonine kinases and protein tyrosine kinases based on the amino acid to which they transfer the phosphate group. Protein tyrosine kinases play vital roles in numerous pathways that regulate growth, development and oncogenesis in animals. However, no protein tyrosine kinase has been cloned so far from plants. The sequence motif, CW(X)6RPXF of sub-domain XI is well conserved among biochemically characterized protein tyrosine kinases from human, rat, mice, worm, fruitfly and Dictyostelium. To seek plant genes encoding tyrosine kinase, we have performed extensive genome-wide analysis of Arabidopsis thaliana using the delineated tyrosine kinase from animal systems. Repetitive database mining with CW(X)6RPXF sequence motif revealed the presence of 57 different protein kinases that have tyrosine kinase motifs. Myosin light chain protein kinase was identified as false positive with this motif. Multiple sequence alignment of all the 57 kinases indicated the presence of twelve conserved sub-domains in their kinase catalytic domain. Out of the 12 sub-domains present in protein kinases, sub-domain VIb confers serine/threonine kinase Specificity and sub-domains VIII and XI confer tyrosine kinase specificity. All the 57 kinases were Verified to contain CW(X) 6RPXF in sub-domain XI. However, the catalytic domain of all the catalogued kinases contain KXXN motif in sub-domain VIb, which is indicative of serine/threonine Kinase specificity. None of the kinases had the tyrosine kinase consensus motif RAA or ARR in sub-domain VIb. Thus, the catalytic domains of all the identified Arabidopsis protein kinases have motifs for serine/threonine specificity in sub-domain VIb and tyrosine kinase motif in sub-domain XI. These results indicate that perhaps all the kinases belong to the dual-specificity kinase family. Hence, we have tentatively named these protein sequences as STY (serine/threonine/tyrosine) protein kinases. To examine the relationships of Arabidopsis STY protein kinases, a topographic cladogram was constructed. Casein kinase 1 was used as an outgroup to perceive the true class of STY protein kinase family. Neighbor joining tree was constructed with the full-length protein sequences following the alignments. Dendrogram of STY protein kinases suggested that the kinases are mainly clustered into four groups. Group I includes kinases related to ATN1-like kinases, peanut STY related kinases, soybean GmPK6-like kinases and ATMRK1-like kinases. Group II consists of MAP3K-like kinases, CTR1 and EDR1 related kinases. Group III includes protein kinases that harbor ankyrin domain repeat motifs. These kinases are related to Medicago sativa ankyrin kinase, MsAPK1. Group IV consists of light sensory kinases that are related to Ceratodon purpureus phytochrome kinase. C. purpureus light sensory kinase has both phytochrome and protein kinase domains. However, the protein kinases of group IV do not have a phytochrome domain. BLAST analysis was performed using CW(X)6RPXF motif against all the available plant sequences in the database. We retrieved 11 rice protein kinases and 14 Dictyostelium kinases. In addition, we obtained STY protein kinases from wheat, barley, soybean, tomato, beech and alfalfa. Dendrogram analysis indicated that the plant STY protein kinases are clustered in similar manner as observed for Arabidopsis. Large number of sequences were retrieved when the tyrosine kinase motif CW(X)6RPXF was used to perform BLAST analysis against all the known sequences from animals. As large numbers of protein tyrosine kinases are available in animals, we have used representative kinases of each family towards the construction of phylogenetic tree. The main difference between the animal and plant tyrosine kinases is in the consensus motif conferring the tyrosine and serine/threonine specificity in the sub-domain VIb. Animal tyrosine kinases have consensus ARR/RAA in sub-domain VIb and plant kinases have KXXN which is indicative of serine/threonine specificity. Expression analysis of Arabidopsis STY protein kinases was performed using Genevestigator online search tool Meta-Analyzer. Genes were grouped based on their relative expression levels during a specific growth stage, in a particular organ or following different environmental stresses. Various kinases are highly expressed in stamens and seeds while some kinases are expressed ubiquitously. A number of biotic and abiotic factors upregulated plant STY protein kinases. Gene expression data suggests the importance of STY protein kinases in plant growth and development. Genome-wide analysis is supported by phosphoproteomics in Arabidopsis seedlings. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, phosphoamino acid analysis and peptide mass fingerprinting. Alkaline treatment detected two proteins corresponding to 46 and 37.5 kD. Phosphoamino acids analysis confirmed their dual-specificity nature. MALDI mass spectrometry and peptide mass fingerprinting analysis identified these two proteins as ATN1 and peanut serine/threonine/tyrosine protein kinase like protein from Arabidopsis. To further support the in silico approach, we have overexpressed one of the identified Arabidopsis thaliana serine/threonine/tyrosine protein kinases (AtSTYPK) in E. coli. The recombinant kinase was induced with IPTG and purified by using nickel-nitrilotriacetic acid affinity chromatography. AtSTYPK exhibited a strong preference for manganese over magnesium for kinase activity. The autophosphorylation activity of AtSTYPK was inhibited by the addition of calcium to reaction buffer containing manganese. The rate of autophosphorylation reaction was linear with increasing time and protein concentration. The AtSTYPK phosphorylated histone H1 (type III-S), and myelin basic protein (MBP) in substrate phosphorylation reaction and it did not phosphorylate casein or enolase. To see whether calcium or magnesium inhibits phosphorylation of MBP, we have performed the reaction in the presence of combination of different metal ions. The MBP phosphorylation reaction is more efficient in the presence of Mg2++ Mn2+ than Ca2++ Mn2+ under the same conditions. The recombinant kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors a manganese-dependent serine/threonine kinase domain, COG3642. H248 and S265 on COG3642 are conserved in AtSTYPK and the site-directed mutation of H248 to alanine resulted in loss of serine/threonine kinase activity, but the mutation of S265 to alanine showed a slight increase in its kinase activity. The protein kinase activity is regulated by various mechanisms that include autophosphorylation, protein phosphorylation by other kinases and by the action of regulatory domains or subunits. The role of tyrosine residues in the regulation of peanut dual-specificity kinase activity is well documented, but the importance of serine and threonine residues in the regulation of dual-specificity protein kinase is not studied so far. The kinase activity is generally regulated by phosphorylation of one or more residues within the kinase activation loop. The role of threonine residues in the kinase activation loop and the TEY motif of AtSTYPK were investigated in the present study. Four threonine residues in the activation loop and a T208 in the TEY sequence motif were converted to alanine to study their role in the regulation of kinase activity. The protein kinase activity was abolished when T208 and T293 of the activation loop were converted to alanine. Interestingly, the conversion of T284 in the activation loop to alanine resulted in an increase in both auto- and substrate phosphorylations. The mutation of T288 and T291 to alanine had no effect on kinase activity. There are eight serine residues in the kinase catalytic domain of AtSTYPK and surprisingly there is no serine residue in the kinase activation loop. So it is worthwhile to see how phosphorylation of serine residues regulates the dual-specificity protein kinase activity. The role of each serine residue was studied individually by substituting them with alanine. Serines at positions 215, 259, 269 and 315 regulate the kinase activity both in terms of autophosphorylation and substrate phosphorylation of myelin basic protein. The mutation of serine 265 to alanine resulted in slight increase in auto- and substrate phosphorylations, suggesting that it could be autoinhibitory in function. The other serine residues at positions 165, 181 and 360 did not show any change in the phosphorylation status when compared to wild-type AtSTYPK. In conclusion, this data suggests the importance of serine and threonine residues in the regulation of dual-specificity protein kinase activity and emphasizes the complexity of regulation of dual-specificity protein kinases in plants. To summarise, this study suggests that tyrosine phosphorylation in plants could be brought about only by dual-specificity protein kinases that phosphorylate on serine, threonine and tyrosine residues. This raises an interesting possibility that plants lack classical tyrosine kinases. The results provide a first report of manganese-dependent dual-specificity kinase from plant systems. This data also suggests that plant dual-specificity kinases undergo phosphorylation at multiple amino acid residues and their activity is regulated by various mechanisms, suggesting that they could be regulated by different mechanisms at different stages of plant growth and development. However, the role of dual-specificity kinases in planta has to be understood by mutant analysis in order to assign the physiological roles to these kinases. Further studies are needed to identify the upstream kinase(s) and downstream targets. Determination of physiological functions for dual-specificity protein kinases raises an important challenge in future in the area of plant signal transduction.
3

Structural And Functional Characterization Of Calcium-Dependent Protein Kinase (CaCDPK1) From Cicer Arietinum : Effects Of Autophosphorylation And Membrane Phospholipids

Dixit, Ajay Kumar 07 1900 (has links) (PDF)
In plants, calcium is a ubiquitous signaling molecule and changes in cytosolic calcium levels reported in response to various abiotic and biotic stresses like salt stress, drought, pathogen attack and phytohormone signaling. Any calcium- mediated signal transduction process involves the establishment of a signal-specific change in the cytosolic calcium concentration termed as ‗calcium signature‘ which is decoded by the specific group of proteins called ‗calcium sensors‘ (eg: Calmodulin (CaM) and Ca2+ - regulated kinases). Plants have a novel group of kinases designated as Ca2+- dependent protein kinases (CDPK; EC 2.7.1.37). CDPKs are biochemically distinct from other Ca2+- dependent kinases, such as Ca2+- and phospholipid- dependent protein kinases, as they are activated directly by Ca2+-and are independent of CaM. They exist as monomeric serine/threonine protein kinases and consist of four domains namely an amino-terminal variable domain, a kinase domain, an autoinhibitory domain and a calmodulin-like domain (CaM-LD). CDPKs represent a unique class of Ca2+ sensors, having protein kinase as well as CaM-LD in a single polypeptide chain, enabling them to couple the calcium sensor directly to its responder (kinase). In the absence of calcium signature, CDPKs activity is inhibited by the autoinhibitory domain, which acts as a pseudo-substrate of kinase domain and thus blocks the active site of the enzyme. In the presence of calcium signature, CDPKs undergo conformational changes leading to removal of the inhibition. Besides plants, CDPKs are also reported in few protozoans viz Plasmodium falciparam, Paramecium and Taxoplasma. However, CDPKs are not found in the eukaryotic genome of yeast, nematodes, fruitflies and humans. In the current study, we have cloned CDPK1 gene from Cicer arietinum (CaCDPK1) in pRSET-A expression vector and expressed it in Escherichia coli BL21pLysS strain. However, while expressing the recombinant CaCDPK1 in E.coli, most of the recombinant CaCDPK1 protein was expressed as insoluble form. Therefore, we focused our efforts on optimizing the culture conditions for achieving the maximum yield of soluble recombinant CaCDPK1. Expression of the soluble CaCDPK1 was achieved by optimizing the different conditions like IPTG concentrations, temperature and growth time after induction. Maximum amount of soluble expression of recombinant CaCDPK1 was achieved by inducing the bacterial culture with 0.1 mM IPTG at 0.6 OD and growing it further for 4 h at 25°C. As with several other CDPKs, CaCDPK1 was found to get autophosphorylated in a calcium-dependent manner. To find the significance of autophosphorylation, we measured the substrate phosphorylation activity of the native and autophosphorylated CaCDPK1, which revealed that the autophosphorylation enhances the kinase activity of CaCDPK1 by 2-fold. Autophosphorylation was linearly dependant on concentrations of the enzyme suggesting that the autophosphorylation in CaCDPK1 occurs via an intra-molecular mechanism. Further analysis of autophosphorylation shows that autophosphorylation happens before substrate phosphorylation and provides calcium -independent substrate phosphorylation property. It also reduces the lag phase for activation of the enzyme and utilizes both ATP and GTP as phosphor-donor, but ATP is preferred over GTP. Autophosphorylation was found to occur at serine and threonine residues. The MALDI MS/MS analysis of the cold ATP autophosphorylated CaCDPK1 showed Thr- 339, Ser- 357, and Ser- 367 residues could be the potential autophosphorylation sites in CaCDPK1. Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress conditions. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported in this study. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in Vmax of the enzyme activity by these phospholipids significantly decreased the Km indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K½ = 1.3 nM) when compared to PA (K½ = 56 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response. In the current study we also investigated CaCDPK1 interactions with calcium ions to address the Ca2+ -induced conformational changes in CaCDPK1 by using circular dichroism (CD), fluorescence spectroscopy and isothermal titration (ITC). Isothermal calorimetric analysis of calcium binding to CaCDPK1 shows a biphasic curve with two Kd of 27 nM and 1.72 µM respectively. The fluorescence measurements showed quenching in fluorescence intensity with a 5 nm red shift. The plot of changes in intensity against calcium concentrations again showed a biphasic curve, indicating that there may be more than one kind of Ca2+ binding sites. 8-anilinonaphthalene-1-sulfonic acid (ANS) binding showed that calcium bound form of CaCDPK1 exposes hydrophobic surfaces which may act as binding sites for other proteins. CD analysis of CaCDPK1 showed that it‘s an alpha helical rich protein and its helical content increases after binding to calcium. Taken all together this study describes the successful heterologous expression of Cicer arietinum CDPK isoform 1 in E.coli. and demonstrates that the autophoshorylation happens via an intra-molecular mechanism and it increases the kinase activity of CaCDPK1 at least by 2-fold. We also report here that CaCDPK1 prefers ATP as phosphodonor over GTP. The present study also shows the activation of CaCDPK1 by PC and PA, but not by PE or diacylglycerol. Both phospholipids were able to bind to CaCDPK1 and increased its Vmax and affinity towards the exogenous substrate, histone III-S. The current study also shows that calicum binding induces conformational changes in CaCDPK1 and the all four EF hand motifs of CaCDPK1 do not function in an equivalent manner.

Page generated in 0.1079 seconds