Spelling suggestions: "subject:"plant ignaling"" "subject:"plant 2signaling""
1 |
Functional genomics through metabolite profiling and gene expression analysis in Arabidopsis thalianaCortes Bermudez, Diego Fernando 19 August 2008 (has links)
In the post-genomic era, one of the most important goals for the community of plant biologists is to take full advantage of the knowledge generated by the Arabidopsis thaliana genome project, and to employ state-of-the-art functional genomics techniques to assign function to each gene. This will be achieved through a complete understanding of what all cellular components do, and how they interact with one another to produce a phenotype.
Among the proteins encoded by the Arabidopsis genome are 24 related carboxyl methyltransferases that belong to the SABATH family. Several of the SABATH methyltransferases convert plant hormones, like jasmonic acid, indole-3-acetic acid, salicylic acid, gibberellins, and other plant constituents into methyl esters, thereby regulating the biological activity of these molecules and, consequently, myriad important physiological processes.
Our research aims to decipher the function of proteins belonging to the SABATH family by applying a combination of genomics tools, including genome-wide expression analysis and gas-chromatography coupled with mass spectrometry-based metabolite profiling. Our results, combined with available biochemical information, provide a better understanding of the physiological role of SABATH methyltransferases, further insights into secondary plant metabolism and deeper knowledge of the consequences of modulating the expression of SABATH methyltransferases, both at the genome-wide expression and metabolite levels. / Ph. D.
|
2 |
Investigating Phytosulfokine Trafficking: Insights into the Role of Phytohormones in Plant SignalingTindi, Martin 01 December 2024 (has links) (PDF)
Phytosulfokine is a critical signaling peptide involved in plant growth, development, and stress responses. This thesis investigates the trafficking mechanisms of Phytosulfokine (PSK) in Arabidopsis thaliana, employing fluorescently labelled PSK for non-destructive imaging using a custom-built fiber-optic fluorescence microscope. The study aims to determine the mobility and fate of PSK in plant tissues. Experimental results reveal the short-range and long-range movement of PSK across leaves. Additionally, the project highlights the optimization of non-destructive imaging techniques and the synthesis of caged dexamethasone to facilitate optogenetic studies. These findings provide new insights into PSK trafficking mechanisms in plants, enhancing our understanding of phytohormone-mediated plant stress responses and offering potential agricultural biotechnology applications to improve bioenergy crops.
|
3 |
Synthesis of Flagellin 22 As a Probe for Plant Signaling and Molecular Trafficking Towards Improved CropsOffei, Edward 01 August 2021 (has links)
Plant signaling involves the transport of information within and between plant cells from receptors to effectors. Plants are affected by biotic and abiotic stress conditions like insect attack and extreme temperatures, respectively, which cause disease, the induction of senescence and the reduction of crop yield. To improve plant traits for feed, fiber, and energy applications, it is critical to understand the short- and long-range signaling mechanisms plants use to control growth, biomass composition, senescence and responses to environmental stresses. It is known that many plant signaling molecules have profound effects on plants, through mechanisms that remain largely obscure. A key gap in knowledge is the understanding of the mechanisms that govern the movement and fate of signaling molecules. This study seeks to synthesize signaling probes based on flagellin 22 (flg22), a 22-amino acid peptide that induces defense gene expression to trigger both local and systemic immune responses in plants. Solid-phase synthesis of fluorescently-tagged derivatives of flg22 was initiated, and studies on the uptake of labeled probes was conducted using a fiber-optic fluorescence microscope that was adapted for use in plants. Fluorescence microscopy showed uptake and internalization of TAMRA-flg22 in cells of Arabidopsis thaliana Columbia (wild-type strain), which was not observed in the fls2 strain in which FLS2, the receptor for flg22, had been knocked out.
|
4 |
Preferences of Plutella xylostella Oviposition for Mechanically Damaged, Herbivore Damaged, and Plant-Plant Primed Arabidopsis thalianaThompson, Tyler 20 November 2014 (has links)
No description available.
|
5 |
Memória fisiológica e comunicação radicular induzida por metil jasmonatoYamashita, Felipe Oliveira January 2019 (has links)
Orientador: Luiz Fernando Rolim de Almeida / Resumo: Apesar de serem organismos sésseis, as plantas movimentam ativamente estruturas vegetativas e reprodutivas, levando a interação com o ambiente ao redor. As plantas mantêm comunicação com plantas vizinhas, herbívoros e predadores através da emissão de compostos químicos exsudados pela raiz e esses eventos modificam o ambiente ocupado pelos vegetais. Esses exsudatos podem induzir a alteração de padrões morfológicos e fisiológicos além da expressão gênica de plantas vizinhas. Utilizamos o metil jasmonato, um regulador vegetal, para desencadear dois ciclos indutivos em plantas e comunicação com plantas vizinhas. Durante o estímulo, analisamos assimilação líquida de CO2 (A), condutância estomática (gs), taxa de transpiração (E), eficiência do uso da água (EUA), taxa de transporte de elétrons (ETR), fluorescência máxima (FM) e basal (F0), dissipação fotoquímica (qP) e rendimento quântico efetivo do PSII (PSII), além da expressão do gene SHR, padrão de metilação de histonas e parâmetros anatômicos em plantas com aplicação e plantas vizinhas. Plantas com aplicação de metil jasmonato apresentaram queda nos parâmetros fisiológicos horas após o contato com o elicitor, porém em segundo contato, tais parâmetros não diferiram do controle, indicando possível efeito de memória (imprint). Plantas induzidas pelo metil jasmonato podem ter emitido sinais às plantas vizinhas, proporcionando maiores taxas de A, gs, FM e F0 das plantas vizinhas em relação às induzidas. Portanto a comunicação entre... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Although they are sessile organisms, plants actively move their vegetative and reproductive structures, leading to interaction with the surrounding environment. Plants maintain communication with neighboring plants, herbivores and predators through emission of chemical compounds by root and these events modify the environment occupied by plants. These exudates may induce changes in morphological and physiological patterns beyond the gene expression of neighboring plants. We used methyl jasmonate, a plant regulator, to trigger two inductive cycles in plants and communication with neighboring plants. During the stimulus, we analyzed CO2 net assimilation (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), electron transport rate (ETR), maximum fluorescence (FM), basal fluorescence (F0), photochemical dissipation (qP) and quantum yield of PSII (FPSII), as well as SHR gene expression, histone methylation pattern and anatomical parameters in plants with application and neighboring plants. Plants with methyl jasmonate application showed minor physiological parameters hours after the elicitor contact, but in the second contact, these parameters did not differ from the control group, indicating a possible memory effect (imprint). Plants induced by methyl jasmonate may have emitted signals to neighboring plants, providing higher rates of A, gs, FM and F0 of the neighboring plants in relation to the induced ones. Therefore the communication between plants... (Complete abstract click electronic access below) / Mestre
|
6 |
Subcellular dynamics of the endogenous elicitor peptide AtPep1 and its receptors in Arabidopsis: implications for the plant immunity / Dinâmica subcelular do peptídeo endógeno AtPep1 e seus receptores em Arabidopsis: implicações na imunidade de plantasMorea, Fausto Andres Ortiz 14 August 2015 (has links)
This work investigated the subcellular dynamics of the plant elicitor peptide AtPep1 and its interplay with plant defense responses. First, an introduction of the plant innate immunity system is provided with emphasis on pattern trigger immunity (PTI), which is based on the recognition of \"non-self\" and \"self\" elicitor molecules by surface-localized patternrecognition receptors (PRRs). Then, the Arabidopsis endogenous peptides that act as selfelicitor molecules are presented, with details on AtPep1 and its PEPR receptors. Plant endomembrane trafficking is described, encompassing endocytic pathways, clathrin mediated endocytosis (CME) and receptor-mediated endocytosis (RME). In the next chapter, we explored strategies for the in vivo study of the subcellular behavior of AtPep1; to this end, we fused the precursor protein of AtPep1 (PROPEP1) to GFP and assessed its localization. We found that PROPEP1 was associated with the tonoplast and accumulated in the vacuole, suggesting that this organelle could work as the station where PROPEP1 is stored and later released, only in a danger situation, hence initiating AtPep1. Moreover, we generated AtPep1 versions labeled with fluorescent dyes and demonstrated that this peptide could be fluorescently tagged without loss of its biological activity. In chapter 3, we combined classical and chemical genetics with life imaging to study the behavior of a bioactive fluorescently labeled AtPep1 in the Arabidopsis root meristem. We discovered that the labeled AtPep1 was able to bind the plasma membrane very quickly in a receptor-dependent manner. Subsequently, the PEPR-AtPep1 complex was internalized via CME and transported to the lytic vacuole, passing through early and late endosomal compartments. Impairment of CME compromised the AtPep1 responses. Our findings provide for the first time an in vivo visualization of a signaling peptide in plant cells, thus giving insights into its intracellular fate and dynamics. The role of the coregulatory receptor BRI1-associated kinase 1 (BAK1) in AtPep1-responses was also investigated (chapter 4). Our results confirmed that BAK1 interacts with PEPRs in a ligand-dependent manner and indicate that BAK1 modulates AtPep1 signaling and endocytosis, but that, when absent, it might be replaced by homologous SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) proteins that could have additional functions during the AtPep1 signaling. Furthermore, phosphorylation events after the formation of PEPR-BAK1 complexes seem to dictate the molecular bases of AtPep1 internalization and signaling. Finally, we discussed our findings in a more general perspective, highlighting the important findings for the plant endomembrane trafficking field, the potential use of fluorescently labeled ligands as a tool to study ligand-receptors pairs, the availability of AtPep1-PEPRs as an excellent model to study endocytosis and its interplay with signaling, and the future challenges in the field. / Neste trabalho, foi investigada a dinâmica subcelular do peptídeo elicitor de planta AtPep1 e suas implicações nas respostas de defesa. Primeiramente, é fornecida uma introdução do sistema imune inato de plantas com ênfase na imunidade ativada por moléculas elicitoras derivadas de organismos invasores ou da mesma planta, após seu reconhecimento por receptores localizados na membrana plasmática (PTI responses). Peptídeos endógenos que têm sido reportados em Arabidopsis como ativadores de PTI são descritos, dando especial destaque para o peptídeo AtPep1 e seus receptores PEPRs. O tráfego de endomembranas em plantas é introduzido, abrangendo as vias de internalização, endocitose mediada por proteínas clathrinas (CME) e endocitose mediada por receptor (RME). No capítulo seguinte, foram avaliadas estratégias para o estudo in vivo da dinâmica subcelular do AtPep1. Para isso a proteína precursora do AtPep1 (PROPEP1) foi fusionada a GFP e sua localização visualizada, encontrando que PROPEP1 é associado com o tonoplasto e acumula dentro do vacúolo, fato que sugere uma função de armazenamento do PROPEP1 para esta organela, desde onde é liberado em caso de uma situação de perigo dando origem ao AtPep1. Adicionalmente, foram produzidas versões biologicamente ativas do AtPep1 marcado com fluróforos. No capítulo três foram combinados genética clássica e genética química com visualizações in vivo para estudar o comportamento de um AtPep1 bioativo e marcado fluorescentemente na células meristemática da ponta da raiz de Arabidopsis, sendo encontrado que AtPep1 se liga rapidamente na membrana plasmática numa forma dependente de receptor. Em seguida, o complexo AtPep1-PEPR foi internalizado via CME e transportado para o vacúolo, passando através do endossomo primário e secundário. Quando o funcionamento da CME foi comprometido, as respostas ao AtPep1 também foram afetadas. Estes resultados fornecem a primeira visualização in vivo de um peptídeo de sinalização em plantas, mostrando sua dinâmica e destino intracelular. O papel regulatório durante as respostas induzidas pelo AtPep1 do co-receptor BRI1-associated kinase 1 (BAK1) foram investigadas (Capítulo quatro). Nossos resultados confirmaram que BAK1 interage com PEPRs numa forma dependente do ligante e indicam que BAK1 modula sinalização e endocitose do AtPep1, no entanto quando ausente, BAK1 pode ser substituído por seus homólogos SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE os quais poderiam ter funções adicionais durante as repostas induzidas pelo AtPep1. Eventos de fosforilação após a formação do complexo PEPR-BAK1 parecem ditar as bases moleculares da internalização e sinalização do AtPep1. Finalmente, são discutidos os resultados encontrados nesta pesquisa numa perspectiva geral, destacando a relevância destas descobertas na área de pesquisa em que estão inseridos, o potencial que representa o uso de ligantes marcados fluorescentemente como ferramenta para o estudo de complexos entre ligante-receptor, a disponibilidade do sistema AtPep1-PEPRs como modelo de estudo da endocitose em plantas e sua relação com sinalização, e os futuros desafios na área.
|
7 |
Manganese-Dependent Serine/Threonine/Tyrosine Kinase From Arabidopsis Thaliana : Role Of Serine And Threonine Residues In The Regulation Of Kinase ActivityReddy, Mamatha M 08 1900 (has links)
Protein phosphorylation is an important post-translational modification of proteins, which can either activate or inhibit the function of a given protein. The enzymes, protein kinases and protein phosphatases catalyze the phosphorylation and dephosphorylation of target proteins, respectively. Protein kinases catalyze the transfer of γ-phosphate from ATP to serine, threonine or tyrosine residues in target proteins. They are traditionally classified as protein serine/threonine kinases and
protein tyrosine kinases based on the amino acid to which they transfer the phosphate group. Protein tyrosine kinases play vital roles in numerous pathways that regulate growth, development and oncogenesis in animals. However, no protein tyrosine kinase has been cloned so far from plants. The sequence motif, CW(X)6RPXF of sub-domain XI is well conserved among biochemically characterized protein tyrosine kinases from human, rat, mice, worm, fruitfly and
Dictyostelium. To seek plant genes encoding tyrosine kinase, we have performed extensive
genome-wide analysis of Arabidopsis thaliana using the delineated tyrosine kinase from animal systems. Repetitive database mining with CW(X)6RPXF sequence motif revealed the presence of 57 different protein kinases that have tyrosine kinase motifs. Myosin light chain protein kinase was identified as false positive with this motif. Multiple sequence alignment of all the 57 kinases
indicated the presence of twelve conserved sub-domains in their kinase catalytic domain. Out of the 12 sub-domains present in protein kinases, sub-domain VIb confers serine/threonine kinase Specificity and sub-domains VIII and XI confer tyrosine kinase specificity. All the 57 kinases were Verified to contain CW(X) 6RPXF in sub-domain XI. However, the catalytic domain of all the catalogued kinases contain KXXN motif in sub-domain VIb, which is indicative of serine/threonine Kinase specificity. None of the kinases had the tyrosine kinase consensus motif RAA or ARR in sub-domain VIb. Thus, the catalytic domains of all the identified Arabidopsis protein kinases have
motifs for serine/threonine specificity in sub-domain VIb and tyrosine kinase motif in sub-domain XI. These results indicate that perhaps all the kinases belong to the dual-specificity kinase family.
Hence, we have tentatively named these protein sequences as STY (serine/threonine/tyrosine) protein kinases. To examine the relationships of Arabidopsis STY protein kinases, a topographic cladogram was constructed. Casein kinase 1 was used as an outgroup to perceive the true class of STY protein kinase family. Neighbor joining tree was constructed with the full-length protein sequences following the alignments. Dendrogram of STY protein kinases suggested that the kinases are mainly clustered into four groups. Group I includes kinases related to ATN1-like kinases, peanut STY related kinases, soybean GmPK6-like kinases and ATMRK1-like kinases. Group II consists of MAP3K-like kinases, CTR1 and EDR1 related kinases. Group III includes protein kinases that harbor ankyrin domain repeat motifs. These kinases are related to Medicago sativa ankyrin kinase, MsAPK1. Group IV consists of light sensory kinases that are related to
Ceratodon purpureus phytochrome kinase. C. purpureus light sensory kinase has both
phytochrome and protein kinase domains. However, the protein kinases of group IV do not have a phytochrome domain.
BLAST analysis was performed using CW(X)6RPXF motif against all the available plant
sequences in the database. We retrieved 11 rice protein kinases and 14 Dictyostelium kinases. In addition, we obtained STY protein kinases from wheat, barley, soybean, tomato, beech and alfalfa. Dendrogram analysis indicated that the plant STY protein kinases are clustered in similar manner as observed for Arabidopsis. Large number of sequences were retrieved when the tyrosine kinase motif CW(X)6RPXF was used to perform BLAST analysis against all the known sequences from animals. As large numbers of protein tyrosine kinases are available in animals, we have used representative kinases of each family towards the construction of phylogenetic tree. The main difference between the animal and plant tyrosine kinases is in the consensus motif conferring the tyrosine and serine/threonine specificity in the sub-domain VIb. Animal tyrosine kinases have consensus ARR/RAA in sub-domain VIb and plant kinases have KXXN which is indicative of serine/threonine specificity.
Expression analysis of Arabidopsis STY protein kinases was performed using
Genevestigator online search tool Meta-Analyzer. Genes were grouped based on their relative expression levels during a specific growth stage, in a particular organ or following different environmental stresses. Various kinases are highly expressed in stamens and seeds while some kinases are expressed ubiquitously. A number of biotic and abiotic factors upregulated plant STY
protein kinases. Gene expression data suggests the importance of STY protein kinases in plant growth and development.
Genome-wide analysis is supported by phosphoproteomics in Arabidopsis seedlings.
Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, phosphoamino acid analysis and peptide mass fingerprinting. Alkaline treatment detected two proteins corresponding to 46 and 37.5 kD. Phosphoamino acids analysis confirmed their dual-specificity nature. MALDI mass spectrometry and peptide mass fingerprinting analysis identified these two proteins as ATN1 and peanut serine/threonine/tyrosine protein kinase like protein from Arabidopsis.
To further support the in silico approach, we have overexpressed one of the identified
Arabidopsis thaliana serine/threonine/tyrosine protein kinases (AtSTYPK) in E. coli. The recombinant kinase was induced with IPTG and purified by using nickel-nitrilotriacetic acid affinity chromatography. AtSTYPK exhibited a strong preference for manganese over magnesium for kinase activity. The autophosphorylation activity of AtSTYPK was inhibited by the addition of calcium to reaction buffer containing manganese. The rate of autophosphorylation reaction was linear with increasing time and protein concentration. The AtSTYPK phosphorylated histone H1
(type III-S), and myelin basic protein (MBP) in substrate phosphorylation reaction and it did not phosphorylate casein or enolase. To see whether calcium or magnesium inhibits phosphorylation of MBP, we have performed the reaction in the presence of combination of different metal ions. The MBP phosphorylation reaction is more efficient in the presence of Mg2++ Mn2+ than Ca2++ Mn2+
under the same conditions. The recombinant kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors a manganese-dependent serine/threonine kinase domain, COG3642. H248 and S265 on COG3642 are conserved in AtSTYPK and the site-directed mutation of H248 to alanine resulted in loss of serine/threonine kinase activity, but the mutation of S265 to alanine showed a slight increase in its kinase activity.
The protein kinase activity is regulated by various mechanisms that include
autophosphorylation, protein phosphorylation by other kinases and by the action of regulatory domains or subunits. The role of tyrosine residues in the regulation of peanut dual-specificity kinase activity is well documented, but the importance of serine and threonine residues in the
regulation of dual-specificity protein kinase is not studied so far. The kinase activity is generally regulated by phosphorylation of one or more residues within the kinase activation loop. The role of threonine residues in the kinase activation loop and the TEY motif of AtSTYPK were investigated in the present study. Four threonine residues in the activation loop and a T208 in the TEY sequence motif were converted to alanine to study their role in the regulation of kinase activity. The protein kinase activity was abolished when T208 and T293 of the activation loop were converted to alanine. Interestingly, the conversion of T284 in the activation loop to alanine resulted in an increase in both auto- and substrate phosphorylations. The mutation of T288 and T291 to alanine had no effect on kinase activity.
There are eight serine residues in the kinase catalytic domain of AtSTYPK and surprisingly there is no serine residue in the kinase activation loop. So it is worthwhile to see how phosphorylation of serine residues regulates the dual-specificity protein kinase activity. The role of each serine residue was studied individually by substituting them with alanine. Serines at positions 215, 259, 269 and 315 regulate the kinase activity both in terms of autophosphorylation and substrate phosphorylation of myelin basic protein. The mutation of serine 265 to alanine resulted in
slight increase in auto- and substrate phosphorylations, suggesting that it could be autoinhibitory in function. The other serine residues at positions 165, 181 and 360 did not show any change in the
phosphorylation status when compared to wild-type AtSTYPK. In conclusion, this data suggests the importance of serine and threonine residues in the regulation of dual-specificity protein kinase activity and emphasizes the complexity of regulation of dual-specificity protein kinases in plants.
To summarise, this study suggests that tyrosine phosphorylation in plants could be brought about only by dual-specificity protein kinases that phosphorylate on serine, threonine and tyrosine residues. This raises an interesting possibility that plants lack classical tyrosine kinases. The results provide a first report of manganese-dependent dual-specificity kinase from plant systems. This data also suggests that plant dual-specificity kinases undergo phosphorylation at multiple amino acid
residues and their activity is regulated by various mechanisms, suggesting that they could be regulated by different mechanisms at different stages of plant growth and development.
However, the role of dual-specificity kinases in planta has to be understood by mutant analysis in order to assign the physiological roles to these kinases. Further studies are needed to identify the upstream kinase(s) and downstream targets. Determination of physiological functions
for dual-specificity protein kinases raises an important challenge in future in the area of plant signal transduction.
|
8 |
Synthesis of Phytosulfokine Analogs as Probes for Studying Plant Signaling and Molecular TraffickingNtim, Thomas 01 December 2021 (has links)
Plants are exposed to a wide range of biotic and abiotic stresses that hinder their growth and reduce crop productivity. In their adaptive response, plants use signaling molecules that are trafficked throughout the plant. This research focuses on the chemical synthesis and assessment of analogs of the plant signal phytosulfokine (PSK, a sulfated pentapeptide), its delivery to plants and its observation using a fiber-optic fluorescence microscope. PSK regulates growth, cell expansion, heat tolerance, and tissue longevity. Analogs of PSK were synthesized using solid-phase peptide synthesis. Pure PSK and TAMRA-labeled PSK were delivered into the wild-type Arabidopsis thaliana Col-0 and a transgenic line expressing PSKR-GFP (PSK receptor – green fluorescent protein). PSKR-GFP could be detected in imaging experiments, but no internalization was observed upon treatment with PSK. Successful implementation of a microscopic approach suited for live plants opens a path to understanding how plants signal and adapt under different stress conditions.
|
9 |
Non–Destructive Imaging of Phytosulfokine Trafficking Using a Fiber–Optic Fluorescence MicroscopeAbakah, Bernard, Ntim, Thomas, Offei, Edward, Erb, Christopher, Morgan, Jessica, Liu, Dian, Jelenska, Joanna, Morrell-Falvey, Jennifer L., Greenberg, Jean, Standaert, Robert Frank 06 April 2022 (has links)
Plants secrete peptide ligands and use receptor signaling to respond to stress and control development. Understanding the signaling mechanisms and associated molecular trafficking is key to improving plant health and productivity for food, fiber and energy applications. However, one of the challenges to elucidating communication pathways in plants is to study the trafficking of molecules and signals iteratively and non-destructively.
This study focuses on using fiber-optic fluorescence microscopy to image live plants iteratively and non-destructively after delivering both labeled and unlabeled phytosulfokine (PSK) into the plant. PSK is a sulfated peptide hormone involved in the regulation of plant cell division and growth via specific receptors, PSKRs. It also plays a role in regulating how plants are able to tolerate stress conditions.
The microscope provides two-color (FITC/TRITC) optics and provides high-resolution (3–5 µm) epifluorescence micrographs via a 1-m coherent imaging fiber and a GRIN objective lens. To obtain high-quality images, the fiber was mounted either to a conventional upright microscope body equipped with a leaf compressor, or to a leaf clip with 5-axis positioning (X–Y–Z plus pitch and yaw) mounted on an extensible arm.
PSK and TAMRA-labelled PSK were delivered into the roots of various Arabidopsis thaliana genotypes (wt; receptor-deficient: pskr1/pskr2; and tagged receptor overproducing: PSKR1‑GFP), and their movement in roots and leaves was tracked with the fiber-optic fluorescence microscope.
Peptide trafficking was successfully observed in live plants non- destructively, confirming that PSK is mobile in both wt and receptor-deficient plants. Preliminary results suggest that the level of receptor PSKR1 may change in response to PSK, and that levels of PSKR1, PSKR2 or both may impact the trafficking of PSK. Understanding how PSK is trafficked in plants will offer insights into how we can improve plants health and productivity.
|
10 |
Non-Destructive Imaging of Phytosulfokine Trafficking in Plants Using Fiber-Optic Fluorescence MicroscopyAbakah, Bernard 01 May 2023 (has links)
Plants secrete peptide ligands and use receptor signaling to respond to stress and control development. Understanding these phenomena is key to improving plant health and productivity for food, fiber, and energy applications. Phytosulfokine (PSK), a sulfated peptide hormone, regulates plant cell division, growth, and stress tolerance via specific phytosulfokine receptors (PSKRs). This study uses fiber-optic fluorescence microscopy to elucidate trafficking of PSK in live plants. The microscope features two-color optics and an objective lens connected to a 1-m coherent imaging fiber mounted on either a conventional upright microscope body or 5-axis positioning system (X–Y–Z plus pitch and yaw). PSK and fluorescently-labelled PSK were delivered into roots and leaves of various Arabidopsis thaliana genotypes, and their movement was non-destructively tracked with the microscope. High-resolution (3–5 µm) epifluorescence micrographs confirmed that PSK is mobile in plants and levels of PSKR1, PSKR2, or both may impact the trafficking of PSK.
|
Page generated in 0.0666 seconds