Spelling suggestions: "subject:"proteintyrosine kinaseinhibitors."" "subject:"proteintyrosine kinaseinhibitor.""
1 |
Tumour cell responses to novel fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitorsKnights, Victoria E. E. January 2010 (has links)
No description available.
|
2 |
Quantitative imaging of tyrosine kinase-drug interactions in cells.Chuntharpursat, Eulashini. January 2012 (has links)
Kinases play a crucial role in regulating cellular signaling cascades, making them
therapeutic targets for several human diseases. In human cancers, mis-regulation and
mutations of kinases such as EGFR (epidermal growth factor receptor) have been found
to drive malignant transformation. Due to the conserved structural elements of protein
kinases, the majority of kinase inhibitors available have a tendency to inhibit multiple
targets. The biological impact of this promiscuity is insufficiently defined and the
prevalence of cellular compensatory mechanisms additionally varies the clinical
responses to drug treatment. In order to understand the relationship between selectivity
and efficacy, prior to clinical trials, it is essential to characterize how inhibitors interact
with the kinome within a cellular context.
Monitoring inhibitor-target interactions generally involves in vitro assaying with purified
proteins or protein domains, which compromises the native integrity of the kinases. Cellbased
assays either gain outcomes from bulk populations that average out cell variance or
phenotypic assays that lack molecular resolution. To obtain information on drug
interactions on a single cell level, we have developed a method to measure the direct
binding of kinase inhibitors to their targets in situ and in vivo. Kinase inhibitors are
chemically tagged with fluorophores that serve as acceptors to genetically tagged donor
fluorophores on the enzyme and the interaction is measured using FRET-FLIM. With
epidermal growth factor receptor (EGFR) and irreversible EGFR inhibitors as the model
system, this approach has been applied to image inhibitor-kinase interactions in live and
fixed cells. Using this method, a small panel of tyrosine kinase targets, and labeled
inhibitors, we were able to investigate the cross-specificity within the panel. Additionally
it was found that the specificity of inhibitors for specific kinase conformations enables
the distinction between EGFR in the active and inactive conformation by the inhibitor-probes. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
3 |
Phospho-regulation and metastatic potential of Murine Double Minute 2Batuello, Christopher N. 21 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Murine double minute (Mdm2) is a highly modified and multi-faceted protein that is overexpressed in numerous human malignancies. It engages in many cellular activities and is essential for development since deletion of mdm2 is lethal in early stages of embryonic development. The most studied function of Mdm2 is as a negative regulator of the tumor suppressor protein p53. Mdm2 achieves this regulation by binding to p53 and inhibiting p53 transcriptional activity. Mdm2 also functions as an E3 ubiquitin ligase that signals p53 for destruction by the proteasome. Interestingly recent evidence has shown that Mdm2 can also function as an E3 neddylating enzyme that can conjugate the ubiquitin-like molecule, nedd8, to p53. This modification results in inhibition of p53 activity, while maintaining p53 protein levels. While the signaling events that regulate Mdm2 E3 ubiquitin ligase activity have been extensively studied, what activates the neddylating activity of Mdm2 has remained elusive. My investigations have centered on understanding whether tyrosine kinase signaling could activate the neddylating activity of Mdm2. I have shown that c-Src, a non-receptor protein tyrosine kinase that is involved in a variety of cellular processes, phosphorylates Mdm2 on tyrosines 281 and 302. This phosphorylation event increases the half-life and neddylating activity of Mdm2 resulting in a neddylation dependent reduction of p53 transcriptional activity. Mdm2 also has many p53-independent cellular functions that are beginning to be linked to its role as an oncogene. There is an emerging role for Mdm2 in tumor metastasis. Metastasis is a process involving tumor cells migrating from a primary site to a distal site and is a major cause of morbidity and mortality in cancer patients. To date, the involvement of Mdm2 in breast cancer metastasis has only been correlative, with no in vivo model to definitively define a role for Mdm2. Here I have shown in vivo that Mdm2 enhances breast to lung metastasis through the up regulation of multiple angiogenic factors, including HIF-1 alpha and VEGF. Taken together my data provide novel insights into important p53-dependent and independent functions of Mdm2 that represent potential new avenues for therapeutic intervention.
|
Page generated in 0.0601 seconds