Spelling suggestions: "subject:"proton exchange"" "subject:"croton exchange""
31 |
Platinum based catalysts for the cathode of proton exchange membrane fuel cellsNdzuzo, Linathi January 2018 (has links)
>Magister Scientiae - MSc / Oxygen reduction reaction (ORR) is carried out in the cathode of the proton exchange membrane fuel cell (PEMFC) and it is known for its sluggish kinetics and the existence of two-pathway mechanism, related with the production of water and hydrogen peroxide. Nowadays, the design of novel cathode catalysts that are able to generate both high oxygen reduction currents and water as main product is a challenge since it causes an enhancement in the performance of PEMFC. Generally, these catalysts are composed of platinum nanoparticles, bearing in mind its high activity towards the ORR. However, the use of platinum means an increase in the total cost of PEMFCs due to its scarcity and high cost. This topic has been the motivation for a wide research in the field of PEMFCs during the last several years, being the main goal to design efficient and low cost catalysts for the cathode of PEMFCs. In this Master thesis project, platinum-palladium (Pt-Pd) catalysts supported on carbon black (CB), carbon nanofibers (CNF) and carbon xerogels (CX) were synthesised using methanol (MeOH), formaldehyde (FMY), n-propanol (nPrOH), ethanol (EtOH) and ascorbic acid (AA). The as-prepared materials were physically characterised by energy dispersive X-ray (EDS), X-ray diffraction (XRD) and transmission electronic microscopy (TEM), in order to determine its composition and morphological characteristics. The catalytic activity towards ORR was assessed by means of electrochemical techniques as rotating disc electrode (RDE) and cyclic voltammetry (CV).
|
32 |
Synthesis and characterization of purely sulphonated and composite membranes for high temperature fuel cellsDe Almeida, Nicole E. 01 April 2010 (has links)
Fuel cell technologies have developed high interest due to their ability to provide energy in an environmentally friendly method. Proton exchange membrane fuel cells (PEM-FCs) require a PEM for use, where the most accepted PEM used today is Nafion. Nafion is ideal due to its chemical durability and high proton conductivity however it is highly expensive and limited to 80˚C during operation. To target these issues two methods have been developed. One was to synthesize a new membrane material to replace Nafion based upon sulphonated polysiloxanes and the other was to improve Nafion by synthesizing a composite. Both of these methods involved the sulphonated silane 2-4-chlorosulphonylphenethyltrimethoxysilane. Methods to characterize membranes to observe their properties compared to Nafion were thermogravimetric analysis (TGA), Fourier transmission infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (used to determine proton conductivity) and fuel cell performance. / UOIT
|
33 |
Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel CellsJiao, Kui January 2011 (has links)
Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most promising energy conversion devices for the future in automotive applications. One of the major technical challenges for the commercialization of PEMFC is the effective start-up from subzero temperatures, often referred to as “cold start”. The major problem of PEMFC cold start is that the product water freezes when the temperature inside the PEMFC is lower than the freezing point. If the catalyst layer (CL) is fully occupied by ice before the cell temperature rises above the freezing point, the electrochemical reaction may stop due to the blockage of the reaction sites. However, only a few of the previous PEMFC studies paid attention to cold start. Hence, understanding the ice formation mechanisms and optimizing the design and operational strategies for PEMFC cold start are critically important.
In this research, an experimental setup for the cold start testing with simultaneous measurement of current and temperature distributions is designed and built; a one-dimensional (1D) analytical model for quick estimate of purging durations before the cold start processes is formulated; and a comprehensive three-dimensional (3D) PEMFC cold start model is developed. The unique feature of the cold start experiment is the inclusion of the simultaneous measurement of current and temperature distributions. Since most of the previous numerical models are limited to either 1D or two-dimensional (2D) or 3D but only considering a section of the entire cell due to computational requirement, the measured distribution data are critically important to better understand the PEMFC cold start characteristics. With a full set of conservation equations, the 3D model comprehensively accounts for the various transport phenomena during the cold start processes. The unique feature of this model is the inclusion of: (i) the water freezing in the membrane electrolyte and its effects on the membrane conductivity; (ii) the non-equilibrium mass transfer between the water in the ionomer and the water (vapour, liquid and ice) in the pore region of the CL; and (iii) both the water freezing and melting in the CL and gas diffusion layer (GDL). This model therefore provides the fundamental framework for the future top-down multi-dimensional multiphase modelling of PEMFC. The experimental and numerical results elaborate the ice formation mechanisms and other important transport phenomena during the PEMFC cold start processes. The effects of the various cell designs, operating conditions and external heating methods on the cold start performance are studied. Independent tests are carried out to identify and optimize the important design and operational parameters.
|
34 |
The Application of Sulfonated Poly(arylene ether)s for Proton Exchange MembraneHo, Chi-Jen 06 July 2011 (has links)
Three aromatic poly(arylene ether)s P2¡BP3¡BP4 were synthesized from bis(fluoride)4,4¡¨¡¨-Difluoro-3,3¡¨¡¨-bsi-trifluoromethyl-n¡¨-bisphenyl-[1,1¡¦;4¡¦,1¡¨;4¡¨,1¡¨¡¦;4¡¨¡¦,1¡¨¡¨]-quinquephenyl(n¡¨:2¡¨,3¡¨[G2];2¡¨,3¡¨,5¡¨[G3];2¡¨,3¡¨,5¡¨,6¡¨[G4]) with 4,4'-(9-Fluorenylidene)diphenol. The molecular weight of the polymer (Mw: 105-1.6¡Ñ105, PDI:1.5-2.2) was measured by gel permeation chromatography and the structure was confirmed by NMR spectra. Thermal stability was measured using Thermogravimetry and Thermomechanical Analysis. The polymer had a Td at 520¢J ~550¢J, and soft point at 310¢J. Young's modulus of polymer was (1.25-2.5Gpa). This polymer has high strength, modulus of elasticity, and thermal stability. The polymer consists of polyaromatic groups with bisfluoride monomer, (5, 6, 7 aromatic). We hypothesized that sulfonation of the polymer will exhibit high conductivity and great mechanical properties. Ion exchange capacities (IECs) were evaluated by acid¡Vbase titration. We sulfonated the polymer in order to apply to the proton exchange membrane fuel cell. The results showed after sulfonation of P4, IEC is 3.3(meq/g), and sulfonation of P2 showed that its proton conductivity is 75% more than Nafion117 at 80¢J with 0.28(S/cm).
Keywords: proton exchange membrane, proton conductivity, Nafion, sulfonated, ion exchange capacity
|
35 |
NMR Investigation of the Dynamics of Paramagnetic Molecules and Alcohols in Nafion 117 MembraneTsai, Kun-ming 12 August 2011 (has links)
none
|
36 |
On the Study of Proton Exchange Membrane Fuel Cell¡XThe Fabrication and Performance Analysis of MEALeu, Chun-Ei 11 July 2000 (has links)
This research is to develop procedures on the fabrication of membrane electrode assembly (MEA), which is the heart of the Proton Exchange Membrane Fuel Cell. Sensitivity studies of the manipulated variable, such as pressure, temperature, and time, in the hot press process, which is adopted in the assembling on the performance of the MEA are also performed.
The developed products on the cleaning of membrane as well as the hot press of MEA have been verified through many experiments. The tests of the MEA¡¦s thus produced reveal that temperature and pressure in hot press process have significant influence on MEA performance. Both have to be kept in a suitable range.
Optimal operating conditions in the hot press process may be achieved by conducting more experiments and a detail understanding on the internal structure variation of membrane under high pressure and temperature condition.
|
37 |
Membrane degradation studies in PEMFCsChen, Cheng. January 2009 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Fuller, Thomas; Committee Member: Beckham, Haskell; Committee Member: Hess, Dennis; Committee Member: Koros, William; Committee Member: Meredith, Carson. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
38 |
The effect of nanocatalyst size on performance and degradation in the cathode of proton exchange membrane fuel cellsGroom, Daniel Jeffrey 17 February 2012 (has links)
This thesis discusses the role of initial particle size on the mechanisms of surface area loss of carbon-supported platinum (Pt) electrocatalysts in the cathode of proton exchange membrane fuel cells. Electrocatalyst decay protocols were used to accelerate cathode performance loss for Pt catalysts. Four cathodes with mean platinum particle sizes of 2.1, 3.5, 6.7 and 11.3 nm were evaluated to elucidate the impact of particle size on initial performance and subsequent degradation, when subjected to identical potential cycles. The degradation of Pt electrochemically active surface area (ECA) was significantly greater for 2.1 and 3.5 nm initial sizes compared to 6.7 and 11.3 nm initial sizes. As expected, the ECA loss of the cathodes shows an inverse proportionality with initial particle size. However, the initial performance of the 11.3 nm initial particle size electrode was significantly lower than the three smaller sizes. Thus, an initial Pt particle size of 6.7 nm was identified to offer the ideal balance performance and durability. The current state of standardization in characterizing particle size by transmission electron microscopy (TEM) is also investigated. The result is a standardized protocol for image acquisition and analysis. / text
|
39 |
Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel CellsJiao, Kui January 2011 (has links)
Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most promising energy conversion devices for the future in automotive applications. One of the major technical challenges for the commercialization of PEMFC is the effective start-up from subzero temperatures, often referred to as “cold start”. The major problem of PEMFC cold start is that the product water freezes when the temperature inside the PEMFC is lower than the freezing point. If the catalyst layer (CL) is fully occupied by ice before the cell temperature rises above the freezing point, the electrochemical reaction may stop due to the blockage of the reaction sites. However, only a few of the previous PEMFC studies paid attention to cold start. Hence, understanding the ice formation mechanisms and optimizing the design and operational strategies for PEMFC cold start are critically important.
In this research, an experimental setup for the cold start testing with simultaneous measurement of current and temperature distributions is designed and built; a one-dimensional (1D) analytical model for quick estimate of purging durations before the cold start processes is formulated; and a comprehensive three-dimensional (3D) PEMFC cold start model is developed. The unique feature of the cold start experiment is the inclusion of the simultaneous measurement of current and temperature distributions. Since most of the previous numerical models are limited to either 1D or two-dimensional (2D) or 3D but only considering a section of the entire cell due to computational requirement, the measured distribution data are critically important to better understand the PEMFC cold start characteristics. With a full set of conservation equations, the 3D model comprehensively accounts for the various transport phenomena during the cold start processes. The unique feature of this model is the inclusion of: (i) the water freezing in the membrane electrolyte and its effects on the membrane conductivity; (ii) the non-equilibrium mass transfer between the water in the ionomer and the water (vapour, liquid and ice) in the pore region of the CL; and (iii) both the water freezing and melting in the CL and gas diffusion layer (GDL). This model therefore provides the fundamental framework for the future top-down multi-dimensional multiphase modelling of PEMFC. The experimental and numerical results elaborate the ice formation mechanisms and other important transport phenomena during the PEMFC cold start processes. The effects of the various cell designs, operating conditions and external heating methods on the cold start performance are studied. Independent tests are carried out to identify and optimize the important design and operational parameters.
|
40 |
Investigations Of New Horizons On H2/o2 Proton Exchange Membrane Fuel CellsYazaydin, Ahmet Ozgur 01 January 2003 (has links) (PDF)
Proton exchange membrane fuel cells are electrochemical devices which
convert the chemical energy of hydrogen into electrical energy with a high
efficiency. They are compact and produce a powerful electric current relative to their
size. Different from the batteries they do not need to be recharged. They operate as
long as the fuel is supplied. Fuel cells, therefore, are considered as one of the most
promising options to replace the conventional power generating systems in the
future.
In this study five PEMFCs / namely EAE1, AOY001, AOY002, AOY003 and
AOY004 were manufactured with different methods and in different structures. A
test station was built to make the performance tests. Performances of the PEMFCs
were compared by comparing the voltage-current (V-i) diagrams obtained during the
initial tests at 25 º / C of fuel cell and gas humidification temperatures. AOY001
showed the best performance among all PEMFCs with a current density of 77.5
mA/cm2 at 0.5 V and it was chosen for further parametric studies where the effect of
different flow rates of H2 and O2 gases, gas humidification and fuel cell temperatures
on the performance were investigated.
It was found that increasing fuel cell and gas humidification temperatures
increased the performance. Excess flow rate of reactant gases had an adverse effect
on the performance. On the other hand increasing the ratio of flow rate of oxygen to
hydrogen had a positive but limited effect. AOY001 delivered a maximum current
density of 183 mA/cm2 at 0.5 V. The highest power obtained was 4.75 W
|
Page generated in 0.2213 seconds