Spelling suggestions: "subject:"croton exchange membranes"" "subject:"kroton exchange membranes""
21 |
Synthesis and characterization of new polymer electrolytes to use in fuel cells fed with bio-alcoholsSánchez Ballester, Soraya Carmen 01 September 2017 (has links)
Poly(vinyl alcohol) (PVA)-based membranes have gathered significant interest because of their film forming ability and low cost. These films are usually crosslinked to provide a macromolecular network with high dimensional stability. PVA can be modified by introduction of sulfonic acid groups (sPVA) contributing to increase its proton conductivity. In addition, the preparation of hybrid organic-inorganic composite membranes by the addition of graphene oxide (GO) as nano-filler not only reinforces the matrix but also decreases the permeability of solvents. All this has motivated the use of these materials for the preparation of proton exchange membranes (PEMs) for direct methanol fuel cell (DMFC) applications.
Contribution I presents the chemical schemes followed for the bi-sulfonation of the PVA, the synthesis of GO and the preparation of PVA/GO and sPVA/GO composite membranes. In addition, a structural, morphological, thermal, and mechanical characterization of the starting materials and the composite membranes were performed. Finally, in order to evaluate the suitability of the prepared PEMs in fuel cells, the prot cond. was evaluated at room temperature. The results showed that the addition of GO (1 wt.%) into the sPVA matrix, 30sPVA/GO membrane, enhance by 89% the prot cond. compared to its homologue membrane, 30sPVA, free-standing of GO.
In Contribution II, the proton conductive properties of the previously prepared membranes were investigated as a function of the structural (bi-sulfonation) and morphological (crosslinking and addition of GO) modifications. The bi-sulfonated membrane reinforced with GO, 30sPVA/GO, stands out over the rest. The addition of GO improves considerably its prot cond. (20.96 mS/cm at 90 °C) and its maximum power density (Pmax) in the H2-O2 fuel cell test (13.9 mW/cm2 at 25 ºC).
In Contribution III was studied the effect of a new variable, the sufonation of the GO (sGO), on the functional properties of the composites PVA/sGO and sPVA/sGO for DMFC applications. In addition, the results were compared to that obtained for the previously described PVA/GO and sPVA/GO composites. The results conclude that, contrary to expectations, the multiple sulfonation of the 30sPVA/sGO composite strongly reduces the prot cond. (5.22 mS/cm at 50 °C) compared to its homologue 30sPVA/GO (8.42 mS/cm at 50 °C), despite its higher values of ion exchange capacity (IEC). Finally, the 30PVA/sGO composite (1.85 mW/cm2) shows a significant improvement of the DMFC performance (50 °C, 4M methanol solution) compared to the 30sPVA/GO composite (1.00 mW/cm2).
The Layer-by-Layer (LbL) assembly method was used in Contribution IV for the preparation of composite membranes assembled via hydrogen bonding interactions. To do this, GO/PVA and GO/sPVA bilayers were deposited on the surface of 15PVA and 15sPVA substrate membranes, respectively. The composites were denoted as 15PVA(GO/PVA)n and 15sPVA(GO/sPVA)n where n is the number of deposited bilayers, in our case n ranges between 1 and 3. Finally, the potential of the composite membranes for DMFC applications were evaluated, showing the best performance the 15sPVA(GO/sPVA)1 composite.
Finally, the Contribution V was focused on the preparation of composite membranes by LbL Assembly method, but in this case the assembly forces were electrostatic interactions. The GO was dispersed in a poly(allyl amine hydrochloride) solution (GO-PAH) in order to obtain a positively charged solution. The composites were assembled by alternate deposition of GO-PAH and sPVA layers on the surface of 15PVA and 15sPVA substrates, obtaining as a result the composites 15PVA(GO-PAH/sPVA)n and 15sPVA(GO-PAH/sPVA)n. The best value of prot cond. (8.26 mS/cm at 90 °C) was obtained for the 15PVA(GO-PAH/sPVA)1 composite, almost twice that the value obtained for its homologue sulfonated composite 15sPVA(GO-PAH/sPVA)1 (4.96 mS/cm a 90 °C). / Membranas constituidas básicamente por alcohol polivinílico (PVA) han despertado un gran interés debido a su bajo coste y su fácil procesado para conformarlas en forma de films. Estos films frecuentemente son sometidos a entrecruzamiento para disponer de una red macromolecular con una elevada estabilidad dimensional. La modificación del PVA por introducción de grupos sulfónicos (sPVA) cambia la estructura del polímero contribuyendo a aumentar su conductividad protónica. Además, la preparación de membranas híbridas orgánico-inorgánicas (composites) mediante la adición de óxido de grafeno (GO) refuerza la matriz, a la vez que disminuye su permeabilidad frente a disolventes. Todo ello ha motivado el uso de estos materiales para la preparación de membranas de intercambio protónico (PEMs) empleadas en pilas de combustible de metanol (DMFCs).
En la Contribución I se presentan los esquemas químicos conducentes a la bi-sulfonación del PVA, la síntesis del GO y la preparación de las membranas composite PVA/GO y sPVA/GO. Además, se realizó la caracterización estructural, morfológica, térmica y mecánica de cada uno de los materiales de partida y de los composite. Finalmente, con el fin de evaluar su idoneidad como PEMs en pilas de combustible, se evaluó su cond. prot a temperatura ambiente. Los resultados obtenidos mostraron que la adición de GO (1 wt.%) como nano-carga a la matriz de sPVA genera un composite, 30sPVA/GO, cuya cond. prot supera en un 89 % a la de su membrana homóloga sin carga, 30sPVA.
La Contribución II trata de explorar las propiedades conductoras de las membranas preparadas previamente en función de la modificación estructural (bi-sulfonación) y la morfológica (reticulación y adición de GO). La membrana bi-sulfonada y reforzada con GO, 30sPVA/GO, destaca sobre el resto. La adición de GO mejora considerablemente tanto la cond. prot (20.96 mS/cm a 90 ºC) como la densidad de potencia máxima (Pmax) en pila de combustible de hidrógeno (13.9 mW/cm2 a temperatura ambiente).
En la Contribución III se estudió el efecto de una nueva variable, la sulfonación del GO (sGO), sobre las propiedades funcionales de los composites PVA/sGO y sPVA/sGO en aplicaciones de DMFC. Además, se llevó a cabo un estudio comparativo con los composite PVA/GO y sPVA/GO previamente descritos. Los resultados concluyeron que, en contra a lo esperado, la múltiple sulfonación de la membrana 30sPVA/sGO reduce fuertemente su cond. prot (5.22 mS/cm a 50 ºC) en comparación con su homóloga 30sPVA/GO (8.42 mS/cm a 50 ºC), aun mostrando valores superiores de IEC. Finalmente, el rendimiento de la composite 30PVA/sGO (1.85 mW/cm2) en una DMFC (50 ºC, disolución de metanol 4M) mostró una mejora significativa en comparación con la composite 30sPVA/GO (1.00 mW/cm2).
El método de LbL assembly se empleó en la Contribución IV para la preparación de composites ensamblados mediante enlaces por puente de hidrógeno. Para ello, se llevó a cabo la deposición de bicapas de GO/PVA y GO/sPVA sobre los substratos 15PVA y 15sPVA, respectivamente. Los composites se codificaron como 15PVA(GO/PVA)n y 15sPVA(GO/sPVA)n siendo n el número de bicapas depositadas, en nuestro caso n varía entre 1 y 3. Por último, se evaluó su potencial para aplicaciones en DMFC, presentando el mejor comportamiento el composite 15sPVA(GO/sPVA)1.
Finalmente, la Contribución V va dedicada a la fabricación de composites mediante el método de LbL Assembly, pero en este caso a través de interacciones electrostáticas. El GO se dispersó en una disolución de hidrocloruro de polialilamina (GO-PAH), con el fin de dotarlo de carga positiva. El ensamblaje se realizó por deposición alterna de capas de GO-PAH y sPVA, obteniéndose los composites 15PVA(GO-PAH/sPVA)n y 15sPVA(GO-PAH/sPVA)n. El mejor valor de cond. prot (8.26 mS/cm a 90 ºC) se obtuvo para el composite 15PVA(GO-PAH/sPVA)1, siendo casi el doble que el obtenido para su homólogo s / Membranes constituïdes a base PVA han despertat un gran interès a causa del seu baix cost i el seu fàcil processament per conformar-les en forma de films. Aquests films freqüentment són sotmesos a entrecreuament per disposar d'una xarxa macromolecular amb una elevada estabilitat dimensional. La modificació del PVA per introducció de grups sulfònics (sPVA) canvia l'estructura del polímer contribuint a augmentar la seua conductivitat protònica. A més, la preparació de membranes híbrides orgànic-inorgànics (composites) mitjançant addició d'òxid de grafè (GO) reforça la matriu, alhora que disminueix la seua permeabilitat enfront de dissolvents. Tot això ha motivat l'ús d'aquestos materials per a la preparació de membranes d'intercanvi protònic (PEMs) emprades en piles de combustible de metanol (DMFCs).
En la Contribució I es presenten els esquemes químics conduents a la bi-sulfonació del PVA, la síntesi del GO i la preparació de les membranes composite PVA/GO i sPVA/GO. A més, es va realitzar la caracterització estructural, morfològica, tèrmica i mecànica de cada un dels materials de partida i de les membranes composite. Finalment, per tal d'avaluar la seua idoneïtat com a PEMs en piles de combustible, es va mesurar la seua cond. prot a temperatura ambient. Els resultats obtinguts van mostrar que l¿addició de GO (1 wt.%) com a nano-càrrega en la matriu de sPVA genera un composite, 30sPVA/GO, amb una cond. prot que supera en un 89% a la de la seua membrana homòloga sense càrrega, 30sPVA.
La Contribució II tracta d'explorar les propietats conductores de les membranes composite preparades prèviament en funció de la modificació estructural (bi-sulfonació) i morfològica (reticulació i addició de GO). La membrana bi-sulfonada i reforçada amb GO, 30sPVA/GO, destaca sobre la resta. L'addició de GO millora considerablement tant la cond. prot (20.96 mS/cm a 90 ºC) com la densitat de potència màxima (Pmax) a la pila de combustible d'hidrogen (13.9 mW/cm2 a temperatura ambient).
En la Contribució III es va estudiar l'efecte d'una nova variable, la sulfonació del GO (sGO), sobre les propietats funcionals dels composites PVA/sGO i sPVA/sGO per aplicacions en DMFC. A més, es va dur a terme un estudi comparatiu amb els composites PVA/GO i sPVA/GO prèviament descrits. Els resultats van concloure que en contra del que s'esperava, la múltiple sulfonació de la membrana 30sPVA/sGO redueix fortament la seua cond. prot (5.22 mS/cm a 50 ºC) en comparació amb la seua homòloga 30sPVA/GO (8.42 mS/cm a 50 ºC), tot i que mostra valors superiors de IEC. Finalment, el rendiment de la membrana 30PVA/sGO (1.85 mW/cm2) en una DMFC (50 ºC, dissolució de metanol 4M) va mostrar una millora significativa en comparació amb la membrana 30sPVA/GO (1.00 mW/cm2).
El mètode de LBL assembly es va emprar en la Contribució IV per a la preparació de composites acoblats mitjançant enllaços per pont d'hidrogen. Amb aquest fi, es va dur a terme la deposició de bicapes de GO/PVA i GO/sPVA sobre els substrats 15PVA i 15sPVA, respectivament. Els composites es van codificar com a 15PVA(GO/PVA)n i 15sPVA(GO/sPVA)n on n és el nombre de bicapes dipositades, en el nostre cas n varia entre 1 i 3. Finalment, es va avaluar el seu potencial per a aplicacions en DMFC, presentant el millor comportament el composite 15sPVA(GO/sPVA)1.
Finalment, la Contribució V va dedicada a la fabricació de composites mitjançant el mètode de LBL Assembly, però en aquest cas acoblats a través d'interaccions electrostàtiques. El GO es va dispersar en una dissolució de hidroclorur de polialilamina (GO-PAH), per tal de dotar-lo de càrrega positiva. L'acoblament es va realitzar per deposició alterna de capes de GO-PAH i sPVA, obtenint-se els composites 15PVA(GO-PAH/sPVA)n i 15sPVA(GO-PAH/sPVA)n. El millor valor de cond. prot (8.26 mS/cm a 90 ºC) es va obtenir per al composite 15PVA(GO-PAH/sPVA)1, sent gairebé el doble que l'obtingut / Sánchez Ballester, SC. (2017). Synthesis and characterization of new polymer electrolytes to use in fuel cells fed with bio-alcohols [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86198
|
22 |
Linear and Nonlinear Viscoelastic Characterization of Proton Exchange Membranes and Stress Modeling for Fuel Cell ApplicationsPatankar, Kshitish A. 20 August 2009 (has links)
In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111-IP were characterized under various humidity and temperature conditions. These membranes were subjected to a nominal strain in a dynamic mechanical analyzer (DMA), and their stress relaxation behavior was characterized over a period of time. Hygral master curves were constructed noting hygral shift factors, followed by thermal shifts to construct a hygrothermal master curve. This process was reversed (thermal shifts followed by hygral shifts) and was seen to yield a similar hygrothermal master curve. Longer term stress relaxation tests were conducted to validate the hygrothermal master curve. The Prony series coefficients determined based on the hygrothermal stress relaxation master curves were utilized in a linear viscoelastic stress model.
The nonlinear viscoelastic behavior of the membranes was characterized by conducting creep tests on uniaxial tensile specimens at various constant stress conditions and evaluating the resulting isochronal stress-strain plots. The nonlinearity was found to be induced at relatively moderate stress/strain levels under dry conditions. To capture the nonlinearity, the well known Schapery model was used. To calculate the nonlinear parameters defined in the Schapery model, creep/recovery tests at various stress levels and temperatures were performed. A one-dimensional Schapery model was developed and then validated using various experiments.
The fracture properties were studied by cutting membranes using a sharp knife mounted on a specially designed fixture. Again, various temperature and humidity conditions were used, and the fracture energy of the membranes was recorded as a function of cutting rate. Fracture energy master curves with respect to reduced cutting rates were constructed to get some idea about the intrinsic fracture energy of the membrane. The shift factors obtained from the fracture tests were found to match with those obtained from the stress relaxation experiments, suggesting that the knife cutting process is viscoelastic in nature. The rate and temperature dependence for these fracture energies are consistent with the rate, temperature, and moisture dependence of the relaxation modulus, suggesting the usefulness of a viscoelastic framework for examining and modeling durability of fuel cell membranes. The intrinsic fracture energy was initially thought to be a differentiating factor, which would separate various membranes tested in this study from one another. However, it was later found that all the membranes tested showed similar values at lower cutting rates, but showed significant variation at higher reduced cutting rates, and thus was thought to be a more meaningful region to differentiate the membranes for durability understanding.
While the preceding work was undertaken to characterize as-received commercial PEMs, it is possible to modify material properties through treatment processes including thermal annealing and water treatment. The transient and dynamic viscoelastic properties of water-treated Nafion membranes revealed unusual behavior. Such unusual properties might have originated from irreversible morphological changes in PEM. Besides the constitutive viscoelastic properties, another set of properties useful for the stress modeling is the hygral strain induced as a function of relative humidity (RH) The effect of pretreatment on hygral strains induced as a function of RH was also investigated. These studies suggest that pretreatment significantly changes the mechanical properties of proton exchange membranes. / Ph. D.
|
23 |
Synthesis and Characterization of Multiblock Copolymers for Proton Exchange Membrane Fuel Cells (PEMFC)Wang, Hang 25 January 2007 (has links)
Nanophase-separated hydrophilic-hydrophobic multiblock copolymers are promising proton exchange membrane (PEM) materials due to their ability to form various morphological structures which enhance transport.
Four arylene chlorides monomers (2,5-Dichlorobenzophenone and its derivatives) were first successfully synthesized from aluminum chloride-catalyzed, Friedel-Crafts acylation of benzene and various aromatic compounds with 2,5-dichlorobenzoyl chloride. These monomers were then polymerized via Ni (0)-catalyzed coupling reaction to form various high molecular weight substituted poly(2,5-benzophenone)s. Great care must be taken to achieve anhydrous and inert conditions during the reaction.
A series of poly(2,5-benzophenone) activated aryl fluoride telechelic oligomers with different block molecular weights were then successfully synthesized by Ni (0)- catalyzed coupling of 2,5-dichloro-benzophenone and the end-capping agent 4-chloro-4'-fluorobenzophenone or 4-chlorophenly-4′-fluorophenyl sulfone. The molecular weights of these oligomers were readily controlled by altering the amount of end-capping agent. These telechelic oligomers (hydrophobic) were then copolymerized with phenoxide terminated disulfonated poly (arylene ether sulfone)s (hydrophilic) by nucleophilic aromatic substitution to form novel hydrophilic-hydrophobic multiblock copolymers.
A series of novel multiblock copolymers with number average block lengths ranging from 3,000 to 10,000 g/mol were successfully synthesized. Two separate Tgs were observed via DSC in the transparent multiblock copolymer films when each block length was longer than 6,000 g/mol (6k). Tapping mode atomic force microscopy (AFM) also showed clear nanophase separation between the hydrophilic and hydrophobic domains and the influence of block length, as one increased from 6k to 10k. Transparent and creasable films were solvent-cast and exhibited good proton conductivity and low water uptake.
These PAES-PBP multiblock copolymers also showed much less relative humidity (RH) dependence than random sulfonated aromatic copolymers BPSH 35 in proton conductivity, with values that were almost the same as Nafion with decreasing RHs. This phenomenon lies in the fact that this multiblock copolymer possesses a unique co-continuous nanophase separated morphology, as confirmed by AFM and DSC data. Since this unique co-continuous morphology (interconnected channels and networks) dramatically facilitates the proton transport (increase the diffusion coefficient of water), improved proton conductivity under partially hydrated conditions becomes feasible. These multiblock copolymers are therefore considered to be very promising candidates for high temperature proton exchange membranes in fuel cells. / Ph. D.
|
24 |
Atomistic and molecular simulations of novel acid-base blend membranes for direct methanol fuel cellsMahajan, Chetan Vasant 04 February 2014 (has links)
One of the main challenges to transform highly useful Direct Methanol Fuel Cells (DMFC) into a commercially viable technology has been to develop a low cost polymer electrolyte membrane (PEM) with high proton conductivity, high stability and low methanol crossover under operating conditions desirably including high temperatures. Nafion, the widely used PEM, fails to meet all of these criteria simultaneously. Recently developed acid-base polymer blend membranes constitute a promising class of PEMs alternative to Nafion on above criteria. Even though some of these membranes produce better performance than Nafion, they still present numerous opportunities for maximizing high temperature proton conductivity and dimensional stability with concomitant minimization of methanol crossover. Our contribution embarks on the fundamental study of one such novel class of blend membranes viz., sulfonated poly (ether ether ketone) (SPEEK)(95 % by weight) blended with polysulfone tethered with base (5 % by weight) such as 2-aminobenzimidazole (ABIm), 5-amino-benzotriazole (BTraz) and 1H-perimidine (PImd), developed by Manthiram group at The University of Texas at Austin.
In this work, we report extensive all-atom classical as well as ab-initio molecular dynamics (MD) simulations of such water-methanol solvated blend membranes (as well as pure SPEEK and Nafion) the first time. Our approach consists of three steps: (1) Predict dynamical properties
such as diffusivities of water, methanol and proton in such membranes (2) Validate against experiments (3) Develop understanding on the
interplay between basic chemistry, structure and properties, the knowledge that can potentially be used to develop better candidate membranes.
In particular, we elucidate the impact of simple, fundamental physiochemical features of the polymeric membranes such as hydrophilicity,
hydrophobicity, structure or the size of the base on the structural manifestations on the bigger scale such as nanophase segregation, hydrogen bonding or pore sizes, which ultimately affect the permeant transport through such systems. / text
|
25 |
Blending of Proton Conducting CopolymersWeißbach, Thomas 20 October 2010 (has links) (PDF)
Highly proton conducting polymers for operation in hydrogen/oxygen proton exchange membrane fuel cells (PEMFCs) provide often a poor mechanical strength due to high water contents. To strengthen the conducting polymers, blends with different ratios of partially fluorinated sulfonic acid graft and diblock copolymers with perfluorinated polymers were prepared. To analyze the effect of the different quantities of the compounds, with regard to water sorption and proton conducting properties, membranes were prepared by dissolving the components and drop casting.
Partially sulfonated poly([vinylidene difluoride-co-chlorotrifluoroethylene]-g-styrene) (P(VDF-co-CTFE)-g-SPS) was blended with polyvinylidene difluoride (PVDF), decreasing the ion exchange capacity (IEC). The blended polymers absorbed less water. However, the by AC impedance spectroscopy determined proton conductivity stayed stable or increased slightly. The effective proton mobility remained constant. Partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) (P(VDF-co-HFP)-b-SPS) with two different PS-block lengths were blended with different amounts of poly(vinylidene difluoride-co-hexafluoropropylene) (P(VDF-co-HFP)). In that case, the polymers absorbed less water and the proton conductivity decreased stepwise by adding more than 20 wt% P(VDF-co-HFP). The results indicate that a blending of P(VDF-co-CTFE)-g-SPS with PVDF inhibits swelling without having an effect on the proton conductivity, though water sorption and IEC are reduced.
|
26 |
Blending of Proton Conducting CopolymersWeißbach, Thomas 08 October 2010 (has links)
Highly proton conducting polymers for operation in hydrogen/oxygen proton exchange membrane fuel cells (PEMFCs) provide often a poor mechanical strength due to high water contents. To strengthen the conducting polymers, blends with different ratios of partially fluorinated sulfonic acid graft and diblock copolymers with perfluorinated polymers were prepared. To analyze the effect of the different quantities of the compounds, with regard to water sorption and proton conducting properties, membranes were prepared by dissolving the components and drop casting.
Partially sulfonated poly([vinylidene difluoride-co-chlorotrifluoroethylene]-g-styrene) (P(VDF-co-CTFE)-g-SPS) was blended with polyvinylidene difluoride (PVDF), decreasing the ion exchange capacity (IEC). The blended polymers absorbed less water. However, the by AC impedance spectroscopy determined proton conductivity stayed stable or increased slightly. The effective proton mobility remained constant. Partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) (P(VDF-co-HFP)-b-SPS) with two different PS-block lengths were blended with different amounts of poly(vinylidene difluoride-co-hexafluoropropylene) (P(VDF-co-HFP)). In that case, the polymers absorbed less water and the proton conductivity decreased stepwise by adding more than 20 wt% P(VDF-co-HFP). The results indicate that a blending of P(VDF-co-CTFE)-g-SPS with PVDF inhibits swelling without having an effect on the proton conductivity, though water sorption and IEC are reduced.:1 Introduction
2 Literature Review
2.1 Fuel Cells
2.1.1 Proton Exchange Membrane Fuel Cells
2.1.2 Other Types of Fuel Cells
2.2 Proton Conductivity
2.3 Proton Conducting Polymers
2.4 Impedance Spectroscopy
2.5 Polymers
2.6 Blending
2.7 Synthesis
2.7.1 Atom Transfer Radical Polymerization
2.7.2 Emulsion Polymerization
3 Results
3.1 Synthesis
3.1.1 Polyvinylidene Diuoride (PVDF)
3.1.2 Diblock Copolymers P(VDF-co-HFP)-b-SPS and Blends
3.1.3 Graft Copolymer P(VDF-co-HFP)-b-SPS Blends
3.2 Degree of Sulfonation
3.3 Ionomer Content
3.4 Ion Exchange Capacity
3.5 Water Content and Uptake
3.6 Proton Concentration
3.7 Watermolecules per Ionic Group
3.8 Proton Conductivity
3.9 Proton Mobility
4 Discussion & Conclusion
5 Experimental Part
5.1 Synthesis
5.1.1 Synthesis of PVDF
5.1.2 Synthesis of P(VDF-co-HFP)-b-PS
5.1.3 Sulfonation of the Polystyrene Block
5.2 Polymer Characterization
5.3 Membrane Preparation
5.4 Membrane Characterization
Bibliography
Appendix
|
Page generated in 0.118 seconds