• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure, dynamics and phase behavior of concentrated electrolytes for applications in energy storage devices

Park, Chanbum 03 March 2021 (has links)
Diese Arbeit widmet sich der Untersuchung der dynamischen und strukturellen Eigenschaften sowie des Phasenverhaltens konzentrierter flüssiger Elektrolyte und ihrer Anwendung in Energiespeichern mittels Methoden der statistischen Mechanik und mithilfe atomistischer Molekulardynamik (MD) Simulationen. Zuerst untersuchen wir die Struktur-Eigenschafts-Beziehungen in konzentrierten Elektrolytlösungen wie sie in Lithium-Schwefel (Li/S), durch wir ein MD Simulationsmodell repräsentativer state-of-the-art Elektrolyt-Systeme für Li/S-Batterien bestehend aus Polysulfiden, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) und LiNO 3 Elektrolyten mit jeweils unterschiedlichen Kettenlängen gemischt in organischen Lösungsmitteln aus 1,2-dimethoxyethane and 1,3-dioxolane erstellen. Als Zweites befassen wir uns mit der Phasenseparation, die auftritt, wenn sich die physikalisch-chemischen Eigenschaften flüssiger Gemische voneinander unterscheiden. Diese Systeme bestehen üblicherweise aus einem konzentrierten anorganischen Salz und einer ionischen Flüssigkeit. In dieser Arbeit untersuchen wir eine Vielfalt von hochkonzentrierten wässrigen Elektrolytlösungen, die aus unterschiedlichen Zusammensetzungen von LiCl und LiTFSI bestehen. Daraufhin beantworten wir die Frage, wie unterschiedlich die Komponenten in der wässrigen Lösung gemischt sein sollten, damit eine solche flüssig-flüssig-Phasentrennung stattfinden kann. Als letztes untersuchen wir die Ladungsabschirmung, die ein grundlegendes Phänomen ist, das die Struktur von Elektrolyten im Bulk und an Grenzflächen bestimmt. Wir haben in dieser Arbeit die Abschirmlängen für verschiedene Elektrolyte von niedrigen bis zu hohen Konzentrationen untersucht. / Electrolytes can be found in numerous applications in daily life as well as in scientific research. The increases in demand for energy-storage systems, such as fuel cells, supercapacitors and batteries in which liquid electrolyte properties are critical for optimal function, draw critical attention to the physical and chemical properties of electrolytes. Those energy-storage devices contain intermediate or highly concentrated electrolytes where established theories, like the Debye-Hückel (DH) theory, are not applicable. Despite the efforts to describe the physical properties of intermediate or highly concentrated electrolytes, theoretical atomistic-level studies are still lacking. This thesis is devoted to critically investigate the transport/structural properties and a phase behavior of concentrated liquid electrolytes and their application in energy-storage devices, using statistical mechanics and atomistic molecular dynamics (MD) simulations. Firstly, we investigate the structure-property relationship in concentrated electrolyte solutions in next-generation lithium-sulfur (Li/S) batteries. Secondly, phase separation may exist if the physio-chemical properties of liquid mixtures are very different. Recently, the coexistence phase of two aqueous solutions of different salts at high concentrations was found, called aqueous biphasic systems. We explore a wide range of compositions at room temperature for highly concentrated aqueous electrolytes solutions that consist of LiCl and LiTFSI. Lastly, charge screening is a fundamental phenomenon that governs the structure of liquid electrolytes in the bulk and at interfaces. From the DH theory, the screening length is expected to be extremely small in highly concentrated electrolytes. Yet, recent experiments show unexpectedly high screening lengths in those. This intriguing phenomenon has prompted a new set of theoretical works. We investigate the screening lengths for various electrolytes from low to high concentrations.
2

Blending of Proton Conducting Copolymers

Weißbach, Thomas 20 October 2010 (has links) (PDF)
Highly proton conducting polymers for operation in hydrogen/oxygen proton exchange membrane fuel cells (PEMFCs) provide often a poor mechanical strength due to high water contents. To strengthen the conducting polymers, blends with different ratios of partially fluorinated sulfonic acid graft and diblock copolymers with perfluorinated polymers were prepared. To analyze the effect of the different quantities of the compounds, with regard to water sorption and proton conducting properties, membranes were prepared by dissolving the components and drop casting. Partially sulfonated poly([vinylidene difluoride-co-chlorotrifluoroethylene]-g-styrene) (P(VDF-co-CTFE)-g-SPS) was blended with polyvinylidene difluoride (PVDF), decreasing the ion exchange capacity (IEC). The blended polymers absorbed less water. However, the by AC impedance spectroscopy determined proton conductivity stayed stable or increased slightly. The effective proton mobility remained constant. Partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) (P(VDF-co-HFP)-b-SPS) with two different PS-block lengths were blended with different amounts of poly(vinylidene difluoride-co-hexafluoropropylene) (P(VDF-co-HFP)). In that case, the polymers absorbed less water and the proton conductivity decreased stepwise by adding more than 20 wt% P(VDF-co-HFP). The results indicate that a blending of P(VDF-co-CTFE)-g-SPS with PVDF inhibits swelling without having an effect on the proton conductivity, though water sorption and IEC are reduced.
3

Blending of Proton Conducting Copolymers

Weißbach, Thomas 08 October 2010 (has links)
Highly proton conducting polymers for operation in hydrogen/oxygen proton exchange membrane fuel cells (PEMFCs) provide often a poor mechanical strength due to high water contents. To strengthen the conducting polymers, blends with different ratios of partially fluorinated sulfonic acid graft and diblock copolymers with perfluorinated polymers were prepared. To analyze the effect of the different quantities of the compounds, with regard to water sorption and proton conducting properties, membranes were prepared by dissolving the components and drop casting. Partially sulfonated poly([vinylidene difluoride-co-chlorotrifluoroethylene]-g-styrene) (P(VDF-co-CTFE)-g-SPS) was blended with polyvinylidene difluoride (PVDF), decreasing the ion exchange capacity (IEC). The blended polymers absorbed less water. However, the by AC impedance spectroscopy determined proton conductivity stayed stable or increased slightly. The effective proton mobility remained constant. Partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) (P(VDF-co-HFP)-b-SPS) with two different PS-block lengths were blended with different amounts of poly(vinylidene difluoride-co-hexafluoropropylene) (P(VDF-co-HFP)). In that case, the polymers absorbed less water and the proton conductivity decreased stepwise by adding more than 20 wt% P(VDF-co-HFP). The results indicate that a blending of P(VDF-co-CTFE)-g-SPS with PVDF inhibits swelling without having an effect on the proton conductivity, though water sorption and IEC are reduced.:1 Introduction 2 Literature Review 2.1 Fuel Cells 2.1.1 Proton Exchange Membrane Fuel Cells 2.1.2 Other Types of Fuel Cells 2.2 Proton Conductivity 2.3 Proton Conducting Polymers 2.4 Impedance Spectroscopy 2.5 Polymers 2.6 Blending 2.7 Synthesis 2.7.1 Atom Transfer Radical Polymerization 2.7.2 Emulsion Polymerization 3 Results 3.1 Synthesis 3.1.1 Polyvinylidene Diuoride (PVDF) 3.1.2 Diblock Copolymers P(VDF-co-HFP)-b-SPS and Blends 3.1.3 Graft Copolymer P(VDF-co-HFP)-b-SPS Blends 3.2 Degree of Sulfonation 3.3 Ionomer Content 3.4 Ion Exchange Capacity 3.5 Water Content and Uptake 3.6 Proton Concentration 3.7 Watermolecules per Ionic Group 3.8 Proton Conductivity 3.9 Proton Mobility 4 Discussion & Conclusion 5 Experimental Part 5.1 Synthesis 5.1.1 Synthesis of PVDF 5.1.2 Synthesis of P(VDF-co-HFP)-b-PS 5.1.3 Sulfonation of the Polystyrene Block 5.2 Polymer Characterization 5.3 Membrane Preparation 5.4 Membrane Characterization Bibliography Appendix

Page generated in 0.0797 seconds