• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 12
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 116
  • 86
  • 54
  • 43
  • 31
  • 24
  • 24
  • 23
  • 21
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

WL 17: A Young Embedded Transition Disk

Sheehan, Patrick D., Eisner, Josh A. 04 May 2017 (has links)
We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the rho Ophiuchus L1688 molecular cloud complex, which show that it has a 12 au hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband spectral energy distribution (SED) and also require such high extinction that it would presumably arise from dense material close to the source, such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole was produced by the formation of planets it could place constraints on the timescale for the growth of planets in protoplanetary disks.
12

Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

Hendler, Nathanial P., Mulders, Gijs D., Pascucci, Ilaria, Greenwood, Aaron, Kamp, Inga, Henning, Thomas, Menard, Francois, Dent, William R. F., Evans, Neal J., II 31 May 2017 (has links)
The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 mu m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 mu m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA-to establish if and how disk radii scale with stellar mass-should be pursued further.
13

On the interaction between embedded planets and the corotation region of protoplanetary discs

Fendyke, Stephen January 2015 (has links)
Disc material in the corotation region librates with respect to low-mass planets on horseshoe trajectories. The exchange of angular momentum associated with this libration gives rise to the non-linear corotation torque (the horseshoe drag). For the first project described herein, we ran a suite of high-resolution 2D hydrodynamic simulations of low-mass (5 Earth mass) planets, at eccentricities 0 e < 0.3, embedded in both viscous protoplanetary discs with entropy relaxation and inviscid discs without. The attenuation of the corotation torque was obtained from these simulations and found to be well-fitted by an exponential decay with a characteristic ‘e-folding eccentricity’ that scales linearly with disc scale height. These results were tested with different disc scale heights between 0.03 and 0.1 and with a 10 Earth mass planet. In the second project in this thesis we sought to extend on these results by examining the case of an embedded 5 Earth mass planet in three dimensional discs. We found that our scaling relation held in this new case, confirming that it is possible to use 2D simulations with a softening parameter to capture the behaviour of the corotation torque. We investigated the time-averaged horseshoe width as a function of altitude and found that the corotation region extends from the midplane to around three scale heights, changing most near the midplane for eccentric planets. The final project looked at 3D radiative discs, under the influence of stellar irradiation, with more massive embedded planets capable of triggering gap formation. We use the pluto code to simulate a Jupiter mass planet at 5 AU in a protoplanetary disc. We describe our progress in understanding the process of gap formation in a case study of this class of hitherto undescribed disc.
14

Structure formation through magnetohydrodynamical instabilities in protoplanetary and accretion disks /

Noguchi, Koichi, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 84-91). Available also in a digital version from Dissertation Abstracts.
15

Calculating the structure of protoplanetary disks within the first few AU using Pisco

Harrold, Samuel Thomas 16 February 2012 (has links)
The calculation of the physical conditions near the inner rim of a protoplanetary disk using the new computational model Pisco is described. Diagnostic plots illustrate solutions for disk structure, radiation field, chemical composition, and heating and cooling of the disk in a steady-state approximation for both disks with unsettled dust and with settled dust. Disks with unsettled dust are found to have hotter gas temperatures above the disk photosphere and a more pronounced temperature inversion at the disk photosphere. Recommendations are made for the development of Pisco. Pisco has the potential to explore what observed molecular emission can imply about disk structure. / text
16

Tracing the CO “ice line'' in an MRI-active protoplanetary disk with rare CO isotopologues

Yu, Mo, active 2013 03 December 2013 (has links)
The properties of planet-forming midplanes of protostellar disks remain largely unprobed by observations due to the high optical depth of common molecular lines and continuum. However, rotational emission lines from rare isotopologues may have optical depth near unity in the vertical direction, so that the lines are strong enough to be detected, yet remain transparent enough to trace the disk midplane. In this thesis, we present a chemical model of an MRI-active protoplanetary disk including different C, O isotopes and detailed photochemical reactions. The CO condensation front is found to be at 1.5 AU on the disk midplane around a solar like star, and its location remains almost unchanged during 3Myr of evolution. The optical depth of low-order rotational lines of C¹⁷O are around unity, which suggests it may be possible to see into the disk midplane using C¹⁷O. Such ALMA observations would provide estimates of the disk midplane temperature if the CO ice lines were spatially or spectrally resolved. With our computed C¹⁷O/H₂ abundance ratio, one would also be able to measure the disk masses by measuring the intensity of gas emission. / text
17

Protoplanetary Disks in Multiple Star Systems

Harris, Robert Jason 10 April 2014 (has links)
Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. / Astronomy
18

Monte Carlo radiation transfer studies of protoplanetary environments /

Walker, Christina Helen. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, March 2007.
19

Protoplanetary discs across the stellar mass range

Boneberg, Dominika Maria Rita January 2018 (has links)
In this thesis, I discuss two studies concerned with modelling protoplanetary discs around stars from different ends of the stellar mass range. In Chapters 1 and 2, I give an introduction to the field of protoplanetary discs, both from an observational and a modelling point of view, and describe the radiative transfer methods I have employed. In Chapter 3, I present my work regarding the disc around the Herbig Ae star HD 163296. I show the results of applying a new modelling technique to this disc: I combine SED modelling with fits to the CO snowline location and C$^$O $J=2-1$ line profile from ALMA. I find that all of the modelling steps are crucial to break degeneracies in the disc parameter space. The use of all of these constraints favours a solution with a notably low gas-to-dust ratio ($g/d < 20$). The only models with a more interstellar medium (ISM)-like $g/d$ require C$^$O to be underabundant with respect to the ISM abundances and a significant depletion of sub-micron grains, which is not supported by scattered light observations. I propose that the technique can be applied to a range of discs and opens up the prospect of being able to measure disc dust and gas budgets without making assumptions about the $g/d$ ratio. In Chapter 4, I present my work on characterising the disc around the very low mass star V410 X-ray 1. Protoplanetary discs around such low mass stars offer some of the best prospects for forming Earth-sized planets in their habitable zones. The SED of V410 X-ray 1 is indicative of an optically thick and very truncated dust disc, with my modelling suggesting an outer radius of only 0.6 au. I investigate two scenarios that could lead to such a truncation, and find that the observed SED is compatible with both. The first scenario involves the truncation of both the dust and gas in the disc, perhaps due to a previous dynamical interaction or the presence of an undetected companion. The second scenario involves the fact that a radial location of 0.6 au is close to the expected location of the H$_2$O snowline in the disc. As such, a combination of efficient dust growth, radial migration, and subsequent fragmentation within the snowline leads to an optically thick inner dust disc and larger, optically thin outer dust disc. I find that a firm measurement of the CO $J=2-1$ line flux would distinguish between these two scenarios by enabling a measurement of the radial extent of gas in the disc. Many models I consider contain at least several Earth-masses of dust interior to 0.6 au, suggesting that V410 X-ray 1 could be a precursor to a system of tightly-packed inner planets, such as TRAPPIST-1. In Chapter 5, I summarise the work presented in this thesis, give an overview of future applications of the methods outlined in this dissertation, and an outlook on potential future projects.
20

Estudo da dinâmica de captura em discos proto-planetários

Chanut, Thierry Gregory Gil [UNESP] 27 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-08-27Bitstream added on 2014-06-13T18:43:07Z : No. of bitstreams: 1 chanut_tgg_dr_guara.pdf: 931615 bytes, checksum: eb9339c7c510483431d4b235ce98cea8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho de tese exploramos a sugestão de Barge e Sommeria (1995) de captura de partículas em vórtices anticiclônicos que se formam devido a instabilidades na nebulosa proto-planetária. O problema dinâmico foi estudado através de simulações de um disco kepleriano bidimensional e incompressível. Examinamos o processo de concentração de partículas dentro de grandes vórtices através das equações do movimento para partículas individuais (com tamanho de 50 cm e 2,12 m) submetidas à gravidade solar e ao arrasto do gás nebular. Os vórtices levam à captura de um grande número de partículas. Mostramos que a eficácia das capturas não depende somente do valor do arrasto gasoso e da elongação do vórtice mas também do modelo do disco proto-planetário escolhido. Um achado muito importante nesse trabalho de tese pode começar a responder à questão sobre a formação planetária: colapso gravitacional ou coagulação? Quando incluímos a auto-gravidade, os resultados que obtivemos mostram que a acumulação das partículas dentro do vórtice é bem mais rápida. É um ponto muito importante na formação dos núcleos planetários até hoje bastante discutido. De fato, a formação dos núcleos planetários dos planetas gigantes precisa da acumulação de material maior que 1MÅ em muito pouco tempo para que o colapso ocorra antes do efeito gravitacional dentro do vórtice começar a expulsar os planetesimais A auto-gravidade até então bastante negligenciada por muitos autores pode ser uma ferramenta essencial a ser incluída no modelo de formação planetária para explicar tal fato. Outro resultado interessante que obtivemos foi que o crescimento por auto-sedimentação das partículas com tamanho sub-métrico, não é muito eficiente para formar planetesimais. Parece que os vórtices capturam partículas com um tamanho preferencial para formar planetesimais ou núcleos planetários. / In this thesis, we explore the suggestion of Barge & Sommeria (1995) of dust-trapping in anticyclonic vortices forming due to instabilities in the protoplanetary nebula. The dynamical problem is studied through numerical simulations of a two-dimensional incompressible Keplerian disc. We examine the process of particle concentration inside large vortex through a non-collisional N body’s code for individual particles (with sizes of 50 cm and 2,12 m) subject to the solar gravity and the nebular gas drag. The vortices tend to capture a large number of particles. We show that the effectiveness of these captures depend not only on the value of the gaseous drag and the elongation of the vortices but also on the model of the protoplanetary disc chosen. A very important finding in this thesis can start to answer the question of the planetary formation: gravitational collapse or coagulation? When we include the self-gravity, the results that we found show that the accumulation of particles inside the vortices is faster. It is a very important point in the formation of planetary embryo until today highly discussed. In fact, the formation of the giant planets embryo need the accumulation of more material than 1MÅ in a very short time such that the collapse occurs before the gravitational effect inside the vortices start to eject the planetesimals. Self-gravity, until now neglected by many authors could be an essential tool to be included in planetary formation model to explain such fact. Another interesting result that we got was that the growth for auto-sedimentation of particles with sub-metric size, is not very efficient to form planetesimal. It seems that vortices capture particles with a preferential size to form planetesimals or planetary cores.

Page generated in 0.0446 seconds