• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imagerie couleur et hyperspectrale pour la détection et la caractérisation des maladies du bois de la vigne / Color and hyperspectral imagery for detection and characterization of grapevine wood diseases

Rancon, Florian 13 February 2019 (has links)
Les maladies du bois de la vigne sont responsables de pertes économiques importantes pour la filière viticole. Ces maladies d'origine fongique se manifestent notamment par une dégradation de la partie boisée du matériel végétal et par l'apparition erratique de symptômes caractéristiques sur la partie foliaire. Cette thèse est dédiée à l'étude de ces maladies (principalement l'esca) à l'aide de deux capteurs imageurs en proxidétection.La question de la détection des symptômes visibles est tout d'abord abordée à l'aide d'un capteur couleur RVB permettant d'acquérir une image par pied de manière automatique ou semi-automatique. La reconnaissance des symptômes est abordée en deux étapes, d'abord en considérant la classification à l'échelle de la feuille puis la détection à l'échelle du pied. La particularité de cette étude est l'inclusion de facteurs confondants dans le problème de classification, tirant partie de l'information de forme des symptômes de l'esca pour les différencier d'autres troubles et maladies. Dans ce but, une comparaison entre approches SIFT et approches transfer learning récentes est alors conduite. Les résultats nous poussent alors à considérer une architecture deep learning simple (RetinaNet) pour la détection des symptômes sur les images, permettant d'estimer un niveau d'atteinte pour chaque pied.Le second capteur utilisé, une caméra hyperspectrale couvrant le spectre de 500 nm à 1300 nm, tente de répondre à une problématique plus expérimentale, à savoir le comportement spectral des pieds atteints par la maladie pouvant déboucher sur une détection précoce des pieds malades mais sans symptômes foliaires. Un protocole expérimental et une base de données de spectres sont alors constitués pour l'occasion. Les méthodes de réduction de la dimensionnalité permettent d'exploiter l'information hyperspectrale voire d'isoler les longueurs d'onde associées à chacune des deux classes. Les données ne permettent cependant pas, pour la plage de longueur d'onde mesurée et dans les conditions d'acquisition terrain, de réaliser une détection précoce de la maladie sur les pieds sans symptômes.Les différences et similarités entre chacune de ces deux applications, en terme de constitution de base de données, d'algorithmes, de difficultés et de potentiel d'application en conditions réelles sont discutées tout au long du manuscrit. / Grapevine wood diseases in the vineyard are responsible for significant economic losses in the wine industry. These diseases of fungal origin are caracterised by a degradation of the wooded part of the plant material and by the erratic appearance of characteristic symptoms on the leaf part. This thesis is dedicated to the study of these diseases (mainly esca disase) using two imaging sensors and proximal sensing.The issue of visible symptom detection is first addressed using an RGB color sensor to acquire an image for each plant automatically or semi-automatically. The recognition of symptoms is approached in two stages, firstly by considering the classification at leaf-scale and then the detection at the plant-scale. The particularity of this study is the inclusion of confounding factors in the classification problem, taking advantage of the shape information of esca symptoms to differentiate them from other disorders and diseases. For this purpose, a comparison between SIFT approaches and recent transfer learning approaches is then conducted. The results then lead us to consider a simple deep learning architecture (RetinaNet) for the detection of the symptoms on the images, making it possible to estimate a level of disease severity for each vineplant.The second sensor used, a hyperspectral camera covering the spectrum from 500 nm to 1300 nm, tries to tackle a more experimental problem, namely the spectral behavior of the diseased plants which may lead to early detection of diseased plants without foliar symptoms. An experimental protocol and a database of spectra are then formed for the occasion. The dimensionality reduction methods make it possible to exploit the hyperspectral information or even to isolate the wavelengths associated with each class. However, the data do not allow, for the measured wavelength range and in the field acquisition conditions, to perform early detection of the disease on the plant without symptoms.The differences and similarities between each of these two applications, in terms of database constitution, algorithms, difficulties and application potential in real conditions are discussed throughout the manuscript.
2

Conception et évaluation d'un dispositif d'imagerie multispectrale de proxidétection embarqué pour caractériser le feuillage de la vigne / "On-the-go" multispectral imaging system embedded on a track laying tractor to characterize the vine foliage

Bourgeon, Marie-Aure 30 October 2015 (has links)
En Viticulture de Précision, l’imagerie multi-spectrale est principalement utilisée pour des dispositifs de télédétection. Ce manuscrit s’intéresse à son utilisation en proxidétection, pour la caractérisation du feuillage. Il présente un dispositif expérimental terrestre mobile composé d’un GPS, d’une caméra multi-spectrale acquérant des images visible et proche infrarouge, et d’un Greenseeker RT-100 mesurant l’indice Normalized Difference Vegetation Index (NDVI). Ce système observe le feuillage de la vigne dans le plan de palissage, en lumière naturelle. La parcelle étudiée comporte trois cépages (Pinot Noir, Chardonnay et Meunier) plantés en carré latin. En 2013, six jeux de données ont été acquis à différents stades phénologiques.Pour accéder aux propriétés spectrales de la végétation, il est nécessaire de calibrer les images en réflectance. Cela requiert l’utilisation d’une mire de MacBeth comme référence radiométrique. Lorsque la mire est cachée par les feuilles, les paramètres de calibration sont estimés par une interpolation linéaire en fonction des images les plus proches sur lesquelles la mire est visible. La cohérence de la méthode d’estimation employée est vérifiée par une validation croisée (LOOCV).La comparaison du NDVI fournie par le Greenseeker avec celui déterminé via les images corrigées permet de valider les données générées par le dispositif. La polyvalence du système est évaluée via les images où plusieurs indices de végétation sont déterminés. Ils permettant des suivis de croissance de la végétation originaux offrant des potentialités de phénotypage ou une caractérisation de l’état sanitaire de la végétation illustrant la polyvalence et le gain en précision de cette technique. / Mutispectral imaging systems are widely used in remote sensing for Precision Viticulture. In this work, this technique was applied in the proximal sensing context to characterize vine foliage. A mobile terrestrial experimental system is presented, composed of a GPS receiver, a multi-spectral camera acquiring visible and near infrared images, and a Greenseeker RT-100 which measures the Normalized Difference Vegetative Index (NDVI). This optical system observes vine foliage in the trellis plan, in natural sunlight. The experimental field is planted with Chardonnay, Pinot Noir and Meunier cultivars in a latin squared pattern. In 2013, six datasets were acquired at various phenological stages.Spectral properties of the vegetation are accessible on images when they are calibrated in reflectance. This step requires the use of a MacBeth colorchart as a radiometric reference. When the chart is hidden by leaves, the calibration parameters are estimated by simple linear interpolation using the results from resembling images, which have a visible chart. The performance of this method is verified with a cross-validation technique (LOOCV).To validate the data provided by the experimental system, the NDVI given by the Greenseeker was compared to those computed from the calibrated images. The assessment of the versatility of the system is done with the images where several indices were determined. It allows an innovative follow-up of the vegetative growth, and offering phenotyping applications. Moreover, the characterization of the sanitary state of the foliage prove that this technique is versatile and accurate.

Page generated in 0.0694 seconds