• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Der Einfluss von Therapie und Prophylaxe mit Strontiumranelat auf das proximale Femur osteoporotischer Ratten / The influence of therapy and prophylaxis with strontium ranelate on proximal femur of osteoporotic rats

Köstner, Felix 04 February 2020 (has links)
No description available.
12

Biomechanická studie proximální části femorálního vnitrodřeňového hřebu / Biomechanical study of the proximal part of the femoral intermedullary nail

Hrdlička, Jan January 2015 (has links)
The presented Master Thesis is focused on the structural analysis of the proximal femur on which the Proximal Femoral Nail (PFN) and Proximal Femoral Tele-Screw (PFT) systems are applied. These systems are used for a treatment of the intertrochanteric and femoral neck fractures. However, in some cases a loss of stability of the systems may be expected. The presented thesis describes a development of numerical models in which stress distribution of implants and strain distribution of bone tissue are compared. Numerical models were created from real objects. The model of femur geometry was created by using the Computed Tomography (CT). Boundary conditions of the model were estimated from the force equilibrium of the lower limb. All numerical models were processed in the commercial package ANSYS Workbench v15.0. It is shown that the hip screws of the PFN system result in lower equivalent stresses than the screws of the PFT system. Maximal strains of the bone tissue, when using the PFN system, are situated near the fracture, close the hip screw thread. For the PFT system, the maximal strains are only near the area of fracture.
13

Silent slips, trips and broken hips : the recovery experiences of young adults following an isolated fracture of the proximal femur

Janes, Gillian January 2016 (has links)
Isolated hip fracture following a minor fall is a serious injury, normally requiring urgent surgical treatment and a complex recovery journey. Although commonly associated with the elderly, incidence and impact in adults under 60 years of age may be underestimated. The extensive literature almost exclusively focuses on the elderly, surgical interventions and relatively short-term outcomes. Young adults are also missing from the dominant societal discourse and healthcare policy on fragility hip fracture. They therefore represent a silent sub-subset of the fragility hip fracture population, whose recovery experiences and needs, particularly in the longer term, remain largely unknown. A critical interpretivist approach and The Silences Framework (Serrant-Green, 2011), were used to ‘give voice’ to young adults with isolated hip fracture. Thirty participants, between one and ten years post injury, completed an in-depth, minimally structured interview in which they told their story of recovery. An inductive, thematic analysis was undertaken integrating Braun and Clarke (2006) and the four phase cyclical analysis of The Silences Framework (Serrant-Green, 2011). One cross-cutting theme: Communication emerged, together with four other main themes: Experience of care, Impact on self, Impact on others and Moving forward. 11 The findings indicated wide variation in the quality of care, often influenced by social and professional norms regarding hip fracture patient characteristics such as age and mode of injury. Multi-faceted, often long term, physical, social and psychological impact on participants, their family and wider social networks was also found. This included Post Traumatic Stress Disorder type symptoms and impact on work, finances and relationships. The study highlighted some limitations of the current hip fracture care pathway for supporting the specific recovery needs of young adults. It also identified some limited effectiveness of commonly used patient reported outcome measures for hip fracture in this young client group. Exploring the recovery experiences of this under-represented group confirmed, but also altered the silences initially identified. Furthermore, it uncovered new silences which informed recommendations for future research; healthcare practice and policy. This study offers the first long term exploration of the impact of isolated hip fracture following a minor fall in young adults from their perspective. In doing so, it has also demonstrated the appropriateness of The Silences Framework (Serrant-Green, 2011) for guiding a person-centred, experience-based, acute orthopaedic/rehabilitation study undertaken by a student researcher.
14

Deformačně napěťová analýza proximálního konce femuru se skluzovým hřebem / Strain stress analysis of proximal femur with dynamic hip plate

Kohoutek, Jan January 2012 (has links)
The presented Master’s Thesis aims at determining stress and strain distribution in proximal femur with applied PCCP and DHS systems. The DHS system has been widely and successfully used for treating intertrochanteric fractures of proximal femur; in some cases, however, complications concerning implant cut-out and excessive fracture collapse occur. To minimize the risk of stabilization failure, the PCCP system was designed. In the Thesis, the process of creating the numerical model is described and the results obtained by employing Finite Element Method are presented. The 3D models of implants’ geometry were created based on the real objects. The model of proximal femur geometry was built by utilizing a series of CT scans and divided into two bodies with respect to the AO classification afterwards. The loading was obtained by solving the static equilibrium equations for the loose lower extremity. The computation was run in Ansys Workbench v13 software. In the hip screws of the PCCP system, lower values of equivalent stress can be found when compared to the DHS system. However, the equivalent strain generated in the proximal fragment is 3-times higher when the PCCP system is employed than in case of DHS system which may be due to the self-cutting design of PCCP screws. By employing PCCP system, the risk of implant failure is decreased. On the other hand, the bone tissue of the proximal fragment in close vicinity of the implant screws seems to be overloaded and prone to collapse.
15

Abnormalities in the Growth and Development of the Proximal Femur: Comparing Ancient to Modern Populations and Their Incidences of Slipped Capital Femoral Epiphysis and Cam Deformity

Moats, Allison R. 16 May 2014 (has links)
No description available.
16

Reconstruction 3D surfacique du fémur proximal à partir de quelques radiographies / 3D reconstruction of the proximal femur surface using a limited number of radiographs

Akkoul Berkache, Sonia 04 December 2013 (has links)
Pour comprendre et diagnostiquer des pathologies telles que l'ostéoporose, qui est un problème majeur de santé publique et, est un facteur de risque important de fractures notamment la Fracture de l'Extrémité Supérieure du Fémur (FESF), il est essentiel d’aborder ces problématiques en trois dimensions (3D) pour fournir au praticien un outil de diagnostic et de dépistage du risque fracturaire. De plus, la visualisation en 3D de l'anatomie joue un rôle important dans le domaine de la chirurgie orthopédique guidée (assistée par ordinateur). En préopératoire, pour la planification chirurgicale ou la conception de prothèses sur mesure, en per opératoire, pour assister le chirurgien durant l'acte chirurgical et enfin en postopératoire pour le suivi. La reconstruction de modèles anatomiques en 3D peut être réalisée par l'utilisation de techniques d'imagerie 3D directes telles que la tomodensitométrie. Cependant, l'utilisation d'une telle imagerie est limitée à des procédures complexes en raison des contraintes imposées par le coût, la disponibilité et les risques de radiation pour le patient. Ainsi, l'alternative à ce type d'imagerie 3D est de développer des méthodes de reconstruction 3D qui s'appuient uniquement sur quelques radiographies 2D. L'objectif principal de cette thèse est de proposer une technique permettant de reconstruire de façon automatique une surface 3D du fémur proximal à partir d'un nombre restreint de radiographies. Les études précédentes sur la reconstruction de surface ont généralement besoin de connaissances supplémentaires comme l'utilisation d'un modèle générique ou statistique 3D de la forme à reconstruire. La méthode décrite dans cette thèse nécessite seulement les coordonnées 3D de points calculées à partir de quelques paires de clichés radiographiques. Deux approches sont proposées. La première méthode repose sur la mise en correspondance de contours extraits de paires de radiographies et sur un modèle mathématique basé sur le principe de la stéréovision pour le calcul d'un nuage de points 3D. La deuxième technique utilise les résultats de l’approche précédente ainsi que des points extraits d’un autre fémur pour améliorer la précision au niveau de certaines régions sensibles choisies par l’opérateur. La reconstruction du modèle surfacique à partir des nuages de points obtenus par les deux techniques est obtenue par un maillage basé sur l'équation de Poisson. Un recalage 3D/3D est effectué entre le nuage de points calculé et le nuage de points extrait du modèle générique connu ("Gold Standard" obtenu avec des coupes CT-Scan) du même fémur proximal afin de pouvoir comparer la surface reconstruite à un modèle "vérité terrain" et ainsi estimer la précision de la méthode. / To understand and diagnose pathologies such as osteoporosis, which is considered as a major public health issue and, an important risk factor of fractures in particular the proximal femur fracture. The classical tools of diagnosis are mainly based on the analysis of X-rays photographs. These techniques have shown many limitations to carry out the key information for the physician. Through the last decade the 3D visualization of anatomy demonstrated the effectiveness for analysis and diagnosis, particularly for the guided orthopedic surgery (computer aided). In preoperative, for the surgical planning or the design of prostheses, in per operative, to assist the surgeon during the surgical act and finally in postoperative for the monitoring. It is also essential to provide the practitioner with a 3D tool for the diagnosis and analysis of the osteoporosis and the fracture risk. Reconstruction of 3D anatomical models can be achieved by the use of direct 3D imaging modalities such as Computed Tomography. However, such technique is limited to complex procedures because of the constraints imposed by cost, availability and risk of radiation to the patient. Thus, the alternative to this kind of 3D imaging is to develop methods for 3D reconstruction which are based only on few 2D radiographs. The main objective of this work is to propose a tool able to reconstruct automatically a 3D surface of the proximal femur from a limited number of X-ray images. Previous studies on the reconstruction of surfaces usually need additional knowledge such as the use of a 3D generic or statistical model of the shape to be reconstructed. The method described in this thesis requires only the 3D coordinates of points calculated from a few pairs of radiographs. Two approaches are proposed. The first method is based on the matching of extracted contours from pairs of radiographs and on a mathematical model based on the principle of the stereovision for the calculation of a 3D point cloud. The second technique uses the results of the previous method as well as new points, chosen by an operator from another proximal femur to improve accuracy at sensitive areas. The reconstruction of the surface model from this cloud of points is obtained by a meshing based on the Poisson's equation. A 3D/3D registration is made between the cloud of the calculated points and the cloud of the extracted points from the generic model ("Gold Standard" obtained with CT-Scan) of the same proximal femur in order to compare the reconstructed surface with a model "ground truth" and thus estimate the accuracy of the method.

Page generated in 0.0657 seconds