• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OPQS – optische Prozess- und Qualitäts-Sensorik

Löhmannsröben, Hans-Gerd, Kantor, Zoltan, Kumke, Michael U., Schmälzlin, Elmar, Reich, Oliver January 2005 (has links)
Im vorliegenden Beitrag wird an Hand dreier Beispiele der Einsatz von optischer Sensorik zur Produktcharakterisierung dargestellt, nämlich Untersuchungen zum O2-Gehalt in Fruchtsäften, zur Isotopiesignatur von CO2 in Mineralwässern und zu Lichtstreueigenschaften eines Sonnenschutzmittels. Inhalt: Bestimmung von O2 mit Lumineszenzsonden Isotopenselektive Bestimmung von CO2 mit TDLAS Optische Charakterisierung stark streuender Materialien mit Photonendichtewellen
2

Emissionsspektroskopische Analyse an Hochgeschwindigkeitsflammen zur Entwicklung einer Online-Prozessregelung

Sachs, Hendrik 06 February 2002 (has links) (PDF)
Für die Entwicklung neuer Technologien wird mehr und mehr der Einsatz von Spritzschichten benötigt. Hiermit lassen sich die komplexen Anforderungen an die Oberflächeneigenschaften erfüllen. Die thermischen Spritzverfahren werden immer mehr auch zum Mittelpunkt von Industrieanwendungen und bieten ein großes Anwendungsgebiet. Die Steigerung der Produktivität und der Leistung von technischen Anlagen und Maschinen erhöht gleichzeitig auch die Beanspruchung der Bauteile. Daher ist es notwendig, dass hochbeanspruchte oder gefährdete Oberflächen durch thermisches Spritzen geschützt werden, so dass sie den Belastungen besser standhalten. Ebenso führt die allgemeine Rohstoffknappheit dazu, dass Maschinenteile nicht vollständig aus bestimmten Materialien gefertigt werden können. Diese Teile können durch eine geeignete Oberflächenbeschichtung rohstoffsparend und damit kostengünstig hergestellt werden. Ein weiteres Anwendungsgebiet für das thermische Spritzen ist die Reparatur verschlissener Teile. Die hohe Flexibilität des thermischen Spritzens, die geringen Reparaturkosten und die damit verbundenen kurzen Ausfallzeiten kommen der Industrie zu Gute. Nach wie vor existiert keine Online-Prozesskontrolle, welche die relevanten Größen der Wechselwirkung Flamme – Spritzzusatzwerkstoff erfassen kann. Die Schichtoptimierung erfolgt weitestgehend durch eine empirische Veränderung der Spritzparameter und die anschließende Analyse und Zuordnung der Parameter zu den Ergebnissen. Hierbei beschränkt sich die Prozesskontrolle auf das Einstellen konstanter Werte für die regelbaren Eingangsgrößen. Bei diesen Möglichkeiten wird vorausgesetzt, dass bei konstanten Maschineneinstellungen auch ein konstanter Prozess mit reproduzierbaren Ergebnissen vorliegt. Im täglichen Umgang ist jedoch festzustellen, dass die Ergebnisse über einen längeren Zeitraum meist nicht reproduzierbar sind. Eine online arbeitende Meßmethode, die Aussagen über die Geschwindigkeit und Erwärmung der Spritzpartikel macht, liefert die Grundlage für reproduzierbare Ergebnisse. An Stelle der Anlagensteuergrößen werden Partikelparameterkorrelierte Messgrößen überwacht bzw. für eine Steuerung verwendet. Der Zugang zu Flammen- bzw. Partikeltemperatur erfolgt mit Hilfe der optischen Emissionsspektroskopie. In der vorliegenden Arbeit wird das Emissionsspektrum an zwei Orten entlang der Plasmaachse ausgewertet. Aus dem Intensitätsverhältnis von mehreren Spektrallinien eines Elements wird die Temperaturentwicklung der Partikel ermittelt (Temperaturbestimmung an mehreren Orten) und damit auch deren Geschwindigkeit beurteilt. Kenntnisse über die Temperatur- und Geschwindigkeitsverteilung geben die Möglichkeit reproduzierbare Schichten herzustellen, da die Bedingungen zu einem späteren Zeitpunkt exakt reproduziert werden können. Durch fluiddynamische Rechnungen wird der Nachweis erbracht, dass die Temperatur- und Geschwindigkeitsfelder des Plasmas und der injizierten Partikel miteinander korreliert sind. Im Verlauf dieser Arbeit wird weiterhin gezeigt, dass die genannten Messgrößen eine Signifikanz zum Spritzprozess aufweisen. Mögliche Störeinflüsse sowie eine Fehlerbetrachtung ergänzen die gewonnen Aussagen.
3

Statistisches Prozessmanagement : Modellierung betrieblicher Prozessnetzwerke mit multivariaten Methoden /

Braun, Lorenz. January 2002 (has links) (PDF)
Univ., Diss--Hohenheim, 2002. / Literaturverz. S. 216 - 234.
4

Emissionsspektroskopische Analyse an Hochgeschwindigkeitsflammen zur Entwicklung einer Online-Prozessregelung

Sachs, Hendrik 06 February 2002 (has links)
Für die Entwicklung neuer Technologien wird mehr und mehr der Einsatz von Spritzschichten benötigt. Hiermit lassen sich die komplexen Anforderungen an die Oberflächeneigenschaften erfüllen. Die thermischen Spritzverfahren werden immer mehr auch zum Mittelpunkt von Industrieanwendungen und bieten ein großes Anwendungsgebiet. Die Steigerung der Produktivität und der Leistung von technischen Anlagen und Maschinen erhöht gleichzeitig auch die Beanspruchung der Bauteile. Daher ist es notwendig, dass hochbeanspruchte oder gefährdete Oberflächen durch thermisches Spritzen geschützt werden, so dass sie den Belastungen besser standhalten. Ebenso führt die allgemeine Rohstoffknappheit dazu, dass Maschinenteile nicht vollständig aus bestimmten Materialien gefertigt werden können. Diese Teile können durch eine geeignete Oberflächenbeschichtung rohstoffsparend und damit kostengünstig hergestellt werden. Ein weiteres Anwendungsgebiet für das thermische Spritzen ist die Reparatur verschlissener Teile. Die hohe Flexibilität des thermischen Spritzens, die geringen Reparaturkosten und die damit verbundenen kurzen Ausfallzeiten kommen der Industrie zu Gute. Nach wie vor existiert keine Online-Prozesskontrolle, welche die relevanten Größen der Wechselwirkung Flamme – Spritzzusatzwerkstoff erfassen kann. Die Schichtoptimierung erfolgt weitestgehend durch eine empirische Veränderung der Spritzparameter und die anschließende Analyse und Zuordnung der Parameter zu den Ergebnissen. Hierbei beschränkt sich die Prozesskontrolle auf das Einstellen konstanter Werte für die regelbaren Eingangsgrößen. Bei diesen Möglichkeiten wird vorausgesetzt, dass bei konstanten Maschineneinstellungen auch ein konstanter Prozess mit reproduzierbaren Ergebnissen vorliegt. Im täglichen Umgang ist jedoch festzustellen, dass die Ergebnisse über einen längeren Zeitraum meist nicht reproduzierbar sind. Eine online arbeitende Meßmethode, die Aussagen über die Geschwindigkeit und Erwärmung der Spritzpartikel macht, liefert die Grundlage für reproduzierbare Ergebnisse. An Stelle der Anlagensteuergrößen werden Partikelparameterkorrelierte Messgrößen überwacht bzw. für eine Steuerung verwendet. Der Zugang zu Flammen- bzw. Partikeltemperatur erfolgt mit Hilfe der optischen Emissionsspektroskopie. In der vorliegenden Arbeit wird das Emissionsspektrum an zwei Orten entlang der Plasmaachse ausgewertet. Aus dem Intensitätsverhältnis von mehreren Spektrallinien eines Elements wird die Temperaturentwicklung der Partikel ermittelt (Temperaturbestimmung an mehreren Orten) und damit auch deren Geschwindigkeit beurteilt. Kenntnisse über die Temperatur- und Geschwindigkeitsverteilung geben die Möglichkeit reproduzierbare Schichten herzustellen, da die Bedingungen zu einem späteren Zeitpunkt exakt reproduziert werden können. Durch fluiddynamische Rechnungen wird der Nachweis erbracht, dass die Temperatur- und Geschwindigkeitsfelder des Plasmas und der injizierten Partikel miteinander korreliert sind. Im Verlauf dieser Arbeit wird weiterhin gezeigt, dass die genannten Messgrößen eine Signifikanz zum Spritzprozess aufweisen. Mögliche Störeinflüsse sowie eine Fehlerbetrachtung ergänzen die gewonnen Aussagen.
5

Bestimmung des Aufmischungsgrades beim Laser-Pulver-Auftragschweißen mittels laserinduzierter Plasmaspektroskopie (LIPS)

Ohnesorge, Alexander 30 January 2009 (has links) (PDF)
Ziel der vorliegenden Arbeit ist die Untersuchung der Methode der Laserinduzierten Plasmaspektroskopie (LIPS) zur Bestimmung des Aufmischungsgrades ([Eta]) in durch Laserstrahl-Präzisionsauftragschweißen (LAP) hergestellten Beschichtungen. Grund- und Zusatzwerkstoff müssen sich hierbei in ihrer Elementzusammensetzung voneinander unterscheiden. Als Substratmaterial diente unlegierter Baustahl, als Zusatzwerkstoff wurde Stellit 21 eingesetzt. [Eta] stellt eine wichtige Qualitätskenngröße dar und kann nach vorheriger Kalibrierung des LIPS-Messsystems sowohl offline als auch online detektiert werden. Der Aufmischungsgrad korreliert mit dem detektierten Emissionslinienverhältnis. Im untersuchten Fall besteht in guter Näherung ein linearer Zusammenhang zwischen beiden Größen. Die Vorteile von LIPS gegenüber anderen Verfahren liegen insbesondere in der berührungslosen Analyse und der entfallenden Probenpräparation. Prinzipiell lässt sich das Vorgehen auf andere Werkstoffsysteme übertragen. Das verwendete LISP-Messsystem kann in den Fertigungsprozess integriert werden und steht als Technologiemodul für eine qualifizierte Überwachung des Aufmischungsgrades beim LAP-Prozess zur Verfügung.
6

Bestimmung des Aufmischungsgrades beim Laser-Pulver-Auftragschweißen mittels laserinduzierter Plasmaspektroskopie (LIPS)

Ohnesorge, Alexander 08 October 2008 (has links)
Ziel der vorliegenden Arbeit ist die Untersuchung der Methode der Laserinduzierten Plasmaspektroskopie (LIPS) zur Bestimmung des Aufmischungsgrades ([Eta]) in durch Laserstrahl-Präzisionsauftragschweißen (LAP) hergestellten Beschichtungen. Grund- und Zusatzwerkstoff müssen sich hierbei in ihrer Elementzusammensetzung voneinander unterscheiden. Als Substratmaterial diente unlegierter Baustahl, als Zusatzwerkstoff wurde Stellit 21 eingesetzt. [Eta] stellt eine wichtige Qualitätskenngröße dar und kann nach vorheriger Kalibrierung des LIPS-Messsystems sowohl offline als auch online detektiert werden. Der Aufmischungsgrad korreliert mit dem detektierten Emissionslinienverhältnis. Im untersuchten Fall besteht in guter Näherung ein linearer Zusammenhang zwischen beiden Größen. Die Vorteile von LIPS gegenüber anderen Verfahren liegen insbesondere in der berührungslosen Analyse und der entfallenden Probenpräparation. Prinzipiell lässt sich das Vorgehen auf andere Werkstoffsysteme übertragen. Das verwendete LISP-Messsystem kann in den Fertigungsprozess integriert werden und steht als Technologiemodul für eine qualifizierte Überwachung des Aufmischungsgrades beim LAP-Prozess zur Verfügung.
7

Commissioning new applications on processing machines: Part II – implementation

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 07 June 2018 (has links) (PDF)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. At the example of the intermittent transport of small sized goods, for example, chocolate bars, ideas for increasing the maximum machine performance are discussed. Therefore, optimal process motion profiles are synthesised with the help of a computer simulation. In the first part of the paper, the modelling of the process was shown. This second part focusses on implementing the simulated motion approaches on an experimental test rig, whereby the new motion approach is compared to the conventional approach. Hence, the increasing of the performance can be proven. Eventually, possibilities for an online process control are observed which are necessary to prevent unstable process conditions.
8

Commissioning new applications on processing machines: Part II – implementation

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 07 June 2018 (has links)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. At the example of the intermittent transport of small sized goods, for example, chocolate bars, ideas for increasing the maximum machine performance are discussed. Therefore, optimal process motion profiles are synthesised with the help of a computer simulation. In the first part of the paper, the modelling of the process was shown. This second part focusses on implementing the simulated motion approaches on an experimental test rig, whereby the new motion approach is compared to the conventional approach. Hence, the increasing of the performance can be proven. Eventually, possibilities for an online process control are observed which are necessary to prevent unstable process conditions.
9

Ultrasonic Spot Welding of Thin Walled Fibre-Reinforced Thermoplastics

Tutunjian, Shahan 28 July 2021 (has links)
Das Ultraschall-Punktschweißen von faserverstärkten thermoplastischen Kunststoffen hat in der letzten Zeit bei Forschern in der Luftfahrt- und Automobilindustrie großes Interesse hervorgerufen. Es bietet eine effiziente Lösung zum Verbinden großer thermoplastischer Verbundbauteile durch Punktschweißen mit einem hohen Automatisierungsgrad. In der vorliegenden Arbeit wurde eine neue Technik zum Fokussieren der Ultraschallschwingungsenergie an der gewünschten Fügestelle zwischen zwei Fügepartnern aus thermoplastischen Verbundlaminaten untersucht. Bei diesem untersuchten Verfahren waren keine zusätzlichen Energierichtungsgeber zwischen den Fügepartnern erforderlich, um die Vibrationsenergie zu fokussieren. Es wurde festgestellt, dass es durch Schweißen der Laminate zwischen einer Sonotrode und einem Amboss möglich war, eine lokalisierte Wärme durch Reibung zu erzeugen in dem die Sonotrode eine größere Kontaktfläche mit dem Laminat als mit dem Amboss aufwies. In der Anfangsphase des Schweißens wurden die Grenzflächenschichten durch die reibungsverursachte Erwärmung abgeschwächt. Folglich zentrierte sich die zyklische Verformung in diesen abgeschwächten Grenzflächen. Die Annahme des Vorhandenseins der Reibung und ihres Einflusses auf die Wärmeerzeugung wurde mittels mechanischer FEM-Analyse untersucht. Die mikroskopische Analyse des Schweißpunktes lieferte schließlich den Beweis für die Schmelzauslösung an einem Ring um den Schweißpunkt und das anschließende Punktwachstum. Um die räumliche Verteilung der Temperatur und ihre zeitliche Entwicklung in der Schweißzone während des Ultraschallschweißprozesses besser zu verstehen, wurde das thermische Problem numerisch modelliert. Zur Verifizierung der mathematischen Modelle wurden die berechneten Zeitverläufe der Temperatur im Schweißpunktzentrum mit den experimentell ermittelten Werten unter vergleichbaren Bedingungen gegenübergestellt. Es wurde festgestellt, dass nach einer bestimmten Schweißzeit die Temperatur im Schweißzentrum plötzlich anstieg und das Polymer an der Schweißstelle überhitzt und die Zersetzung begann. Es wurde beobachtet, dass der Zeitverlauf der verbrauchten Leistungskurve durch das Schweißgerät einem ähnlichen Muster folgte, wie der Zeitverlauf der Temperatur in der Schweißpunktmitte. Basierend auf dieser Beobachtung wurde ein Steuerungssystem entwickelt. Die zeitliche Ableitung der Schweißleistung wurde in Echtzeit überwacht. Sobald ein kritischer Wert überschritten wurde, wurde die Ultraschallschwingungsamplitude aktiv durch einen Mikrocontroller eingestellt. Bei diesem Ansatz wurde die Temperatur im Schweißpunkt indirekt gesteuert, um während der gesamten Schweißdauer in einem optimalen Bereich zu bleiben. Die Ergebnisse des gesteuerten Schweißprozesses wurden mittels Temperaturmessungen und Computertomographie bewertet. Aus der Studie wurde der Schluss gezogen, dass das leistungsgesteuerte Ultraschall-Punktschweißverfahren eine effiziente und stabile Methode zum automatischen Verbinden von faserverstärkten thermoplastischen Teilen ist.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix / The ultrasonic spot welding of fibre-reinforced thermoplastic composites has recently received strong interest among researchers mainly in the fields of aerospace and automotive industries. It offers an efficient solution to join large thermoplastic composite parts through the spot welding approach with a high level of automation. In this study, a new technique for focusing the ultrasonic vibration energy at the desired spot between two mating thermoplastic composite laminates was investigated. In this method, no additional energy directing protrusions between the weldments were required to focus the vibration energy. It was found that by welding the laminates amid an ultrasonic sonotrode and an anvil in which the prior had a larger contact surface with the laminate as the latter, it was possible to generate a localised frictional heating. In the initial phase of the welding, the frictional heating softened the interfacial layers and thus caused the focusing of the strain energy in the weld spot centre. The assumption for the presence of the friction and its influence on the heat generation was investigated by means of finite element method analysis. Microscopic analysis of the weld spot delivered the proof for the melt initiation at a ring around the weld spot and subsequent inwards growth of the weld spot. In order to gain a better understanding of the temperature spatial distribution and its temporal development in the weld zone during the ultrasonic welding process, the thermal problem was analysed using the explicit finite difference method. The mathematical model was verified through a comparison between the calculated temperature curves and the experimentally obtained counterparts. It was found that after a certain weld duration the temperature in the weld centre underwent a sudden increase and caused the overheating and decomposition of the polymer in the weld spot. It was observed that the time trace of the consumed power curve by the welder followed a similar pattern as the time trace of the temperature in the weld spot centre. Based on this observation, a control system was developed accordingly. The time derivative of the weld power was monitored in real time and as soon as it exceeded a critical value, the ultrasonic vibration amplitude was actively adjusted through a microcontroller. In this approach, the temperature in the weld spot was indirectly controlled to remain within an adequate range throughout the welding duration. The results of the controlled welding process were evaluated by means of temperature measurements and computed tomography scans. It was concluded from the study that the power-controlled differential ultrasonic spot welding process could be an efficient method to fusion bond the fibre-reinforced thermoplastic parts in an automated manner.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix

Page generated in 0.0404 seconds