• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • Tagged with
  • 68
  • 68
  • 68
  • 18
  • 13
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The influence of redundant spatial regularities in statistical and sequence learning

Filipowicz, Alexandre January 2012 (has links)
The following two studies examined the influence of spatial regularities on our ability to learn and predict frequencies and sequences of events. Research into statistical and sequence learning has demonstrated that we can learn the statistical properties of events and use this knowledge to make predictions about future events. Research has also demonstrated that redundant spatial features associated with events can influence our ability to respond to and discriminate between different stimuli. The goal of this thesis was to test whether redundant spatial features could influence our ability to notice non-spatial regularities in an environment. Using a computerized version of the children’s game ‘rock-paper-scissors’ (RPS), undergraduates were instructed to win as often as possible against a computer that played varying strategies. For each strategy, the computer’s plays were either presented with spatial regularity (i.e., ‘rock’ would always appear on the left of the screen, ‘paper’ in the middle, and ‘scissors’ on the right) or without spatial regularity (i.e., the items were equally likely to appear in any of the three screen locations). The results showed that, although irrelevant to the task itself, spatial regularities had a moderate influence when participants learned to exploit easy strategies, and a more pronounced influence when learning to exploit harder strategies. This research suggests that redundant spatial features can influence our ability to learn and represent distributions of events.
22

Spatial deficits in visuomotor control following right parietal injury

Broderick, Carol Elizabeth January 2007 (has links)
Superior parietal cortex has been implicated in visuomotor guidance and is proposed to be specialised for action in the lower visual field and peripersonal space. Two patients, one with a right superior parietal lesion leading to optic ataxia (ME), and one with a lesion affecting right inferior parietal cortex (LH), were compared to elderly controls (n=8) and young controls (n=8) on a reciprocal pointing task with movements made in the near-far direction (i.e., sagittal plane) or right-left direction (i.e., fronto-parallel plane). In contrast to both control groups, who demonstrated a speed-accuracy trade-off in movement time and peak velocity, neither of the patients did. When the time spent post-peak velocity (represented as a percentage of total movement time) was examined, both patients demonstrated larger times post-peak velocity than controls for all movement directions. Furthermore, while rightward movements of the right hand had higher times post-peak velocity than leftward movements there were no directional patterns for near-far movements which contrasted with controls who had larger times post-peak velocity for near movements. The patient with the more superior lesion (ME) had the greatest difficulty with movements made back toward the body suggestive of a role for superior parietal cortex in the fine tuning of movements made in this region of space (i.e., personal or peripersonal space). In contrast, all directions of movement seemed to be equally affected in the patient with a more inferior lesion. These results are discussed in terms of the different roles played by inferior and superior parietal cortex in the control of visually guided movements.
23

Subtle Effects of Sleepiness on Electrocortical Indices of Attentional Resources and Performance Monitoring

Murphy, Timothy Ian 02 February 2007 (has links)
In this dissertation, the effect of mild sleep deprivation on attentional allocation and performance monitoring was investigated using a variety of event-related potential (ERP) paradigms with ecologically realistic periods of sleep deprivation. Seventeen female young adults completed several tasks under alert and sleepy conditions, after 3 and 20 hours of wakefulness, respectively. Objective behavioural measures of response times and error rates indicated virtually no decrements that could be attributed exclusively to sleepiness; however, there were consistent alterations in the ERPs indicative of subtly reduced attentional resources and performance monitoring. The first study (Chapter 2) examined the effect of distraction on the P300, an ERP component related to attention and stimulus processing. Participants performed an auditory oddball task with and without a secondary visual working memory task. Response times (RTs) and P300 amplitudes were affected by the addition of the secondary working memory task. However, an interaction showed that the P300 latency was significantly increased by the secondary task only in the sleepy condition, indicating that processing speed is impaired by a secondary task only when the participant is sleepy. The next study (Chapter 3) used a Go/NoGo contingent negative variation (CNV) task. The CNV is reflective of sustained attention, and is known to be associated with frontal lobe functioning. This task was performed twice, with and without a financial incentive for fast responses, to assess the effect of motivation. The P300 amplitude to the first stimulus and CNV prior to the second were clearly larger to Go stimuli for both levels of alertness when the participant was motivated by the financial incentive. However, with no incentive in the sleepy condition, there was reduced differentiation of the two types of stimuli, indicating a reduced ability to discriminate between important and less important information. In chapters 4 and 5, performance monitoring was examined using two tasks, the Eriksen Flanker task and the Anti-Saccade task, producing an ERP related to errors with two basic components: the error-negativity (Ne/ERN) and error-positivity (Pe), thought to be related to error recognition and error evaluation, respectively. In both data sets, the amplitude of the Ne/ERN was not significantly reduced by sleep deprivation, but the amplitude of the Pe was. In addition, smaller anti-saccade errors produced reduced Ne/ERN amplitudes compared to larger anti-saccade errors. Another marker of performance monitoring is post-error slowing, which was present in the flanker task only during the alert condition. These results indicate that error detection or recognition (Ne/ERN) appears to be relatively preserved during sleep deprivation, but further error evaluation (Pe) and compensation (post-error slowing) are impaired. Taken together, the findings demonstrate that even mild sleep deprivation has a subtle but reliable effect on electrocortical activity associated with attention and performance monitoring despite an absence of behavioural changes, indicating deleterious effects before behavioural changes are observed. Therefore, relying on behavioural tests to determine at what point an individual becomes unsafe to operate machinery or perform various tasks may be misleading.
24

Spatial deficits in visuomotor control following right parietal injury

Broderick, Carol Elizabeth January 2007 (has links)
Superior parietal cortex has been implicated in visuomotor guidance and is proposed to be specialised for action in the lower visual field and peripersonal space. Two patients, one with a right superior parietal lesion leading to optic ataxia (ME), and one with a lesion affecting right inferior parietal cortex (LH), were compared to elderly controls (n=8) and young controls (n=8) on a reciprocal pointing task with movements made in the near-far direction (i.e., sagittal plane) or right-left direction (i.e., fronto-parallel plane). In contrast to both control groups, who demonstrated a speed-accuracy trade-off in movement time and peak velocity, neither of the patients did. When the time spent post-peak velocity (represented as a percentage of total movement time) was examined, both patients demonstrated larger times post-peak velocity than controls for all movement directions. Furthermore, while rightward movements of the right hand had higher times post-peak velocity than leftward movements there were no directional patterns for near-far movements which contrasted with controls who had larger times post-peak velocity for near movements. The patient with the more superior lesion (ME) had the greatest difficulty with movements made back toward the body suggestive of a role for superior parietal cortex in the fine tuning of movements made in this region of space (i.e., personal or peripersonal space). In contrast, all directions of movement seemed to be equally affected in the patient with a more inferior lesion. These results are discussed in terms of the different roles played by inferior and superior parietal cortex in the control of visually guided movements.
25

Grapheme-Colour Synaesthesia Influences Overt Visual Attention

Carriere, Jonathan Scott Andrew January 2007 (has links)
Synaesthesia is a fascinating condition in which ordinary stimuli elicit extraordinary sensory experiences. For example, specific tastes may elicit unusual tactile sensations and standard black letters may elicit highly specific colour experiences. These unusual experiences have been shown to have substantial impact on cognition, emotion, perception, and covert attention. Two experiments are presented which show that synaesthesia also influences overt visual attention. In these experiments two grapheme-colour synaesthetes viewed coloured letters while their eye movements were tracked. Letters were presented in colours that were either congruent or incongruent with the synaesthetes' colours. Eye tracking analysis showed that synaesthetes exhibited a colour congruity bias – a propensity to fixate congruently coloured letters more often and for longer durations than incongruently coloured letters – in a naturalistic free viewing task. In a more structured visual search task, this congruity bias caused synaesthetes to rapidly fixate and identify congruently coloured target letters, but led to problems in identifying incongruently coloured target letters. The results are discussed in terms of their implications for perception in synaesthesia.
26

ATTENTION AND THE PARIETAL CORTEX: INVESTIGATIONS OF SPATIAL NEGLECT, OPTIC ATAXIA, AND THE INFLUENCE OF PRISM ADAPTATION ON ATTENTION

Striemer, Christopher 21 April 2008 (has links)
Some authors have argued that the primary function of the posterior parietal cortex is to control visual attention and awareness, whereas others have argued that the posterior parietal cortex is specialized for controlling actions. The purpose of the present thesis was to examine the influence of prism adaptation – a visuomotor adaptation technique – on visual attention deficits in patients with lesions of parietal cortex. Lesions to dorsal regions of the posterior parietal cortex lead to optic ataxia – a disorder in which visually guided reaching is disrupted. In contrast lesions to ventral (i.e. inferior) regions of the posterior parietal cortex of the right hemisphere lead to spatial neglect – a disorder in which patients are unaware of people or objects in contralesional (left) space. Chapter 1 presents an overview of the organization of the posterior parietal cortex, as well as an introduction to the disorders of spatial neglect and optic ataxia and the use of prism adaptation as a treatment for spatial neglect. Chapter 2 examined the influence of prism adaptation on attentional deficits in patients with right brain damage. Results demonstrated that prism adaptation reduced both the disengage deficit and the rightward attentional bias, two of the classic attentional deficits in neglect. Chapter 3 investigated the role of the dorsal posterior parietal cortex in controlling both reflexive and voluntary attention in two patients with optic ataxia. Lesions to the dorsal posterior parietal cortex led to both a disengage deficit and a rightward attentional bias, similar to patients with neglect, even though neither of the patients had any clinical symptoms of neglect. Contrary to previous work these results indicated that dorsal portions of the posterior parietal cortex – a region not commonly damaged in neglect – are important for controlling the orienting and reorienting of both reflexive and voluntary attention. Furthermore, these results indicated that optic ataxia is not purely a visuomotor disorder that is independent of any perceptual or attentional deficits as was previously assumed. Based on the results of Chapters 2 and 3 it was hypothesized that the beneficial effects of prism adaptation on attention may operate via the superior parietal lobe, a region which is typically undamaged in neglect, and is known to be important for controlling attention and action. Chapter 4 provided support for this hypothesis by demonstrating that a patient with lesions to the superior parietal lobe, who had the same attentional deficits as the right brain damaged patients tested in Chapter 2, failed to demonstrate any beneficial effects of prism adaptation on his attentional performance. Specifically, prism adaptation had no influence on his disengage deficit or his rightward attentional bias. Therefore, these data provide direct evidence that the beneficial effects of prisms on attention rely, at least in part, on the superior parietal lobe. Finally, Chapter 5 concludes with a summary of the research findings from the present thesis, and puts forward a new theory to conceptualize the mechanisms underlying the beneficial effects of prisms in patients with neglect.
27

The Influence of Study Context on Recollection: Cognitive, Neural, and Age-Related Processes

Skinner, Erin I. January 2009 (has links)
This thesis examines how the context in which an item is studied affects the phenomenological experience of the rememberer. Previous research has extensively studied how the match between study and test context affect subsequent memory performance; however, little work has attempted to examine how visual context information provided at study affects later recollection when that context information is not re-presented at retrieval. In particular, the quality of the memory retrieved may be enhanced when highly meaningful visual context information is provided at study. In each of seven experiments in the current thesis, participants studied words presented with context information high or low in meaningful content, and on a later recognition memory test made a Remember, Know, or New response to the words presented alone. Experiment 1 showed that participants had better overall memory, specifically recollection, for words studied with pictures of intact as opposed to scrambled faces. In Experiment 2, these results were replicated and recollection was shown to be higher for words studied with versus without pictures of faces. Experiment 3 showed that participants had higher memory performance, and recollection in particular, for words studied with upright compared to inverted faces. In Experiment 4, participants showed equivalent memory for words studied with novel or familiar faces. These results suggest that recollection benefits when visual context information high in meaningful content accompanies study words, and that this benefit is not related to the novelty of the context. To further test the claim that participants engage in elaborative processes at study to bind item and context information, improving subsequent recollection, the subsequent set of experiments examined how normal, healthy aging affects participants’ ability to use context information provided at study to benefit subsequent recollection. Older adults have been shown to experience deficits both in memory for context and in recollection, suggesting that they might fail to use context effectively to increase recollection, in contrast to younger adults. Experiment 5 found that younger, but not older, adults showed higher recollection for words studied with faces as compared to rectangles. To determine the type of cognitive processing required to obtain recollection benefits, and to examine whether instruction could alleviate age-related deficits, in Experiment 6, the type of processing engaged during the encoding of context-word pairs was manipulated. Younger and older adults studied words presented with a picture of a face under a surface feature or binding feature instruction condition. Both age groups showed higher recollection in the binding than surface instruction condition. Results suggest that older adults do not spontaneously engage in the processes required to boost recollection when visual context information is provided at study, although instructional manipulation during encoding lessens this deficit. This is in line with the Associative Deficit Hypothesis (Naveh-Benjamin, 2000), suggesting that older adults’ recollection deficit involves a specific difficulty in binding item and context information. The final experiment used functional Magnetic Resonance Imaging (fMRI) to examine the neural correlates of recollection, specifically testing the hypothesis that sensory-specific reactivation of context information occurs during item recollection. In Experiment 7, brain activation for Remember responses given to words studied with and without meaningful context information was compared. Behaviourally, 8 of the 14 participants showed a higher proportion of Remember responses to words studied with faces than scrambled faces, and 6 did not. Whole brain analysis showed that, for only those participants who showed higher memory performance for words studied with faces, activation in the fusiform gyrus and hippocampus was higher, and a region-of-interest analysis showed increased activation in the functionally-defined FFA (identified in a localizer task), for Remember responses given to words studied with faces compared to scrambled faces. A regression analysis additionally showed that activation in the fusiform gyrus increased as the relative recollection benefit for words studied with meaningful (face) compared to non-meaningful (scrambled face) context information increased across participants. Results suggest that encoding context can influence the pattern of recollection responses on a recognition task and that sensory-specific reactivation is related to behavioural performance. The findings of these experiments suggest that participants can use context information high in meaningful content at study to improve subsequent recollection and I suggest that this involves the use of elaborative processes at encoding that integrates item and meaningful contexts. Such recollection benefits can also be observed in older adults when they are provided experimental instructions to bind item and context at encoding. In addition, the brain regions used to process context information are reactivated at retrieval and, importantly, that this neural pattern determines whether a boost in recollection, from the encoding manipulation, is observed. Participants can thus use context information provided at study to boost subsequent recollection, and I suggest that this involves cognitive processes that bind item and context information at encoding and the reactivation of sensory-specific brain regions at retrieval.
28

Investigating Spatial Working Memory and Saccadic Remapping Processes in Healthy Young and Elderly Participants

Goldberg, Lana January 2009 (has links)
Additional cognitive deficits, including impairments in spatial working memory and/or saccadic remapping processes, have recently been implicated in unilateral neglect – a neurological condition classically characterized as a disorder of attention. The interactions between saccadic remapping and three memory processes (position memory, object memory and object-location binding) were investigated in healthy young (n=27) and elderly (n=20) participants to establish a baseline of comparison for future use with neglect patients and to study the effects of aging on these processes. In a computerized task, participants were instructed to first detect a target, and then hold in memory either its position, identity or both over a delay period. Subsequently, participants were tested on their memory for that particular task. The saccadic remapping component was introduced at the onset of the delay period with the fixation cross shifting either to the left, or right, requiring participants to remap the visual array into either right or left space, or remaining in the centre of the screen (i.e., no remapping condition). In the position memory and object-location binding task, a consistent cost to memory performance was found when remapping right only for the young participants. Overall the elderly did not perform any of the tasks involving a position memory component as well as the young participants and showed spatial asymmetries in the target detection task. The lack of an effect of remapping in the elderly group may be due to a general decrement in performance. These results are discussed in terms of hemispheric asymmetries and cognitive theories of aging.
29

RELPH: A Computational Model for Human Decision Making

Mohammadi Sepahvand, Nazanin January 2013 (has links)
The updating process, which consists of building mental models and adapting them to the changes occurring in the environment, is impaired in neglect patients. A simple rock-paper-scissors experiment was conducted in our lab to examine updating impairments in neglect patients. The results of this experiment demonstrate a significant difference between the performance of healthy and brain damaged participants. While healthy controls did not show any difficulty learning the computer’s strategy, right brain damaged patients failed to learn the computer’s strategy. A computational modeling approach is employed to help us better understand the reason behind this difference and thus learn more about the updating process in healthy people and its impairment in right brain damaged patients. Broadly, we hope to learn more about the nature of the updating process, in general. Also the hope is that knowing what must be changed in the model to “brain-damage” it can shed light on the updating deficit in right brain damaged patients. To do so I adapted a pattern detection method named “ELPH” to a reinforcement-learning human decision making model called “RELPH”. This model is capable of capturing the behavior of both healthy and right brain damaged participants in our task according to our defined measures. Indeed, this thesis is an effort to discuss the possible differences among these groups employing this computational model.
30

Subtle Effects of Sleepiness on Electrocortical Indices of Attentional Resources and Performance Monitoring

Murphy, Timothy Ian 02 February 2007 (has links)
In this dissertation, the effect of mild sleep deprivation on attentional allocation and performance monitoring was investigated using a variety of event-related potential (ERP) paradigms with ecologically realistic periods of sleep deprivation. Seventeen female young adults completed several tasks under alert and sleepy conditions, after 3 and 20 hours of wakefulness, respectively. Objective behavioural measures of response times and error rates indicated virtually no decrements that could be attributed exclusively to sleepiness; however, there were consistent alterations in the ERPs indicative of subtly reduced attentional resources and performance monitoring. The first study (Chapter 2) examined the effect of distraction on the P300, an ERP component related to attention and stimulus processing. Participants performed an auditory oddball task with and without a secondary visual working memory task. Response times (RTs) and P300 amplitudes were affected by the addition of the secondary working memory task. However, an interaction showed that the P300 latency was significantly increased by the secondary task only in the sleepy condition, indicating that processing speed is impaired by a secondary task only when the participant is sleepy. The next study (Chapter 3) used a Go/NoGo contingent negative variation (CNV) task. The CNV is reflective of sustained attention, and is known to be associated with frontal lobe functioning. This task was performed twice, with and without a financial incentive for fast responses, to assess the effect of motivation. The P300 amplitude to the first stimulus and CNV prior to the second were clearly larger to Go stimuli for both levels of alertness when the participant was motivated by the financial incentive. However, with no incentive in the sleepy condition, there was reduced differentiation of the two types of stimuli, indicating a reduced ability to discriminate between important and less important information. In chapters 4 and 5, performance monitoring was examined using two tasks, the Eriksen Flanker task and the Anti-Saccade task, producing an ERP related to errors with two basic components: the error-negativity (Ne/ERN) and error-positivity (Pe), thought to be related to error recognition and error evaluation, respectively. In both data sets, the amplitude of the Ne/ERN was not significantly reduced by sleep deprivation, but the amplitude of the Pe was. In addition, smaller anti-saccade errors produced reduced Ne/ERN amplitudes compared to larger anti-saccade errors. Another marker of performance monitoring is post-error slowing, which was present in the flanker task only during the alert condition. These results indicate that error detection or recognition (Ne/ERN) appears to be relatively preserved during sleep deprivation, but further error evaluation (Pe) and compensation (post-error slowing) are impaired. Taken together, the findings demonstrate that even mild sleep deprivation has a subtle but reliable effect on electrocortical activity associated with attention and performance monitoring despite an absence of behavioural changes, indicating deleterious effects before behavioural changes are observed. Therefore, relying on behavioural tests to determine at what point an individual becomes unsafe to operate machinery or perform various tasks may be misleading.

Page generated in 0.0716 seconds