• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Platinum catalysts degradation by oxide-mediated platinum dissolution in PEMFCs (Proton Exchange Membrane Fuel Cells)

Kim, Seok koo 1973- 02 March 2015 (has links)
Proton exchange membrane fuel cells (PEMFCs) have attracted great attention due to their high power density, low-temperature operation and high energy conversion efficiency. However, the high cost of Pt catalysts and durability problems hinder their commercialization. So their cost must be lowered drastically and their durability must be extended. In an effort to overcome these problems, there have been intensive efforts to enhance the activity, durability and to lower the price of catalysts by alloying with other less expensive metals. In particular, the sluggish kinetics of ORR caused by Pt oxide at cathode and Pt catalyst degradation by electrochemical surface area (ECSA) loss have been a huge research area where a lot of researchers have paid lots of attention to solve. In this regard, the objective of this dissertation is to evaluate a series of Pt catalyst electrode surface electrochemical reactions on PEMFC electrode in order to help searching new catalysts and enhancing system design, assist in the search for new catalysts and improved system design by suggesting the developed mechanism of electrocatalyst activity and stability (durability). We have been focused on understanding the oxide-mediated dissolution of Pt by using electrochemical experiment methods such as RRDE, EQCN, SECM with a combination of ICP-MS and computational simulation with COMSOL Multiphysics. Firstly, in chapter 3, we showed the oxide-mediated Pt dissolution rate and the influence of hydrogen and cation underpotential deposition on Pt dissolution. In chapter 4, we revealed oxygen reduction reaction (ORR) plays a significant role in Pt oxide formation and reduction that influences the Pt catalyst dissolution, resulting in accelerated Pt dissolution rate at specific potential range. Finally, we found out the nature of mobile species generated during PtO₂ reduction process which have been disputed as Pt ion or other mobile species and fulfilled computational simulation for evaluation of SECM experiment in chapter 5. Based on these experiments and simulation, we were able to explain some mechanism of literature results that already were reported but have not been clearly explained so far. In terms of the purpose of this dissertation, the mechanism of oxide-mediated Pt dissolution, influence of ORR to Pt oxide formation/reduction and Pt dissolution, the nature of mobile species generated during PtO₂ reduction process, are sure to be very helpful in developing new catalysts and enhancing system design and suggested operating conditions. / text
2

Experimental Methods and Mathematical Models to Examine Durability of Polymer Electrolyte Membrane Fuel Cell Catalysts

Dhanushkodi, Shankar Raman 07 June 2013 (has links)
Proton exchange membrane fuel cells (PEMFC) are attractive energy sources for power trains in vehicles because of their low operating temperature that enables fast start-up and high power densities. Cost reduction and durability are the key issues to be solved before PEMFCs can be successfully commercialized. The major portion of fuel cell cost is associated with the catalyst layer which is typically comprised of carbon-supported Pt and ionomer. The degradation of the catalyst layer is one of the major failure modes that can cause voltage degradation and limit the service life of the fuel cell stack during operation. To develop a highly durable and better performing catalyst layer, topics such as the causes for the degradation, modes of failure, different mechanisms and effect of degradation on fuel cell performance must be studied thoroughly. Key degradation modes of catalyst layer are carbon corrosion and Pt dissolution. These two modes change the electrode structure in the membrane electrode assembly (MEA) and result in catalyst layer thinning, CO2 evolution, Pt deposition in the membrane and Pt agglomeration. Alteration of the electrode morphology can lead to voltage degradation. Accelerated stress tests (ASTs) which simulate the conditions and environments to which fuel cells are subject, but which can be completed in a timely manner, are commonly used to investigate the degradation of the various components. One of the current challenges in employing these ASTs is to relate the performance loss under a given set of conditions to the various life-limiting factors and material changes. In this study, various degradation modes of the cathode catalyst layer are isolated to study their relative impact on performance loss ‗Fingerprints‘ of identifiable performance losses due to carbon corrosion are developed for MEAs with 0.4 mg cm−2 cathode platinum loadings. The fingerprint is used to determine the extent of performance loss due to carbon corrosion and Pt dissolution in cases where both mechanisms operate. This method of deconvoluting the contributions to performance loss is validated by comparison to the measured performance losses when the catalyst layer is subjected to an AST in which Pt dissolution is predominant. The limitations of this method iv are discussed in detail. The developed fingerprint suggests that carbon loss leading to CO2 evolution during carbon corrosion ASTs contributes to performance loss of the cell. A mechanistic model for carbon corrosion of the cathode catalyst layer based on one appearing in the literature is developed and validated by comparison of the predicted carbon losses to those measured during various carbon corrosion ASTs. Practical use of the model is verified by comparing the predicted and experimentally observed performance losses. Analysis of the model reveals that the reversible adsorption of water and subsequent oxidation of the carbon site onto which water is adsorbed is the main cause of the current decay during ASTs. Operation of PEM fuel cells at higher cell temperatures and lower relative humidities accelerates Pt dissolution in the catalyst layer during ASTs. In this study, the effects of temperature and relative humidity on MEA degradation are investigated by applying a newly developed AST protocol in which Pt dissolution is predominant and involves the application of a potentiostatic square-wave pulse with a repeating pattern of 3s at 0.6 V followed by 3s at 1.0 V. This protocol is applied at three different temperatures (40°C, 60°C and 80°C) to the same MEA. A diagnostic signature is developed to estimate kinetic losses by making use of the effective platinum surface area (EPSA) obtained from cyclic voltammograms. The analysis indicates that performance degradation occurs mainly due to the loss of Pt in electrical contact with the support and becomes particularly large at 80°C. This Pt dissolution AST protocol is also investigated at three different relative humidities (100%, 50% and 0%). Electrochemical impedance spectroscopy measurements of the MEAs show an increase in both the polarization and ohmic resistances during the course of the AST. Analysis by cyclic voltammetry shows a slight increase in EPSA when the humidity increases from 50% to 100%. The proton resistivity of the ionomer measured by carrying out impedance measurements on MEAs with H2 being fed on the anode side and N2 on the cathode side is found to increase by the time it reaches its end-of-life state when operated under 0 % RH conditions.
3

Properties of Pt electrodes investigated by the Electrochemical Quartz Crystal Microbalance

Wang, Tao 21 November 2007 (has links)
The Electrochemical Quartz Crystal Microbalance (EQCM) was used as the main investigation tool coupled with other conventional electrochemical methods to study the electrocatalytic properties of polycrystalline Pt electrodes, including two separate projects. The first project studied the early stage of oxide film formation on the Pt surfaces and the inhibition of the catalytic properties by the oxide film. The inhibition of the fast electrode reaction of small molecules by the growth of oxide film allows those molecules to be used as probes for the nature of the oxide film. The hydrogen oxidation current, jox calculated by differencing the cyclic voltammetry currents with and without H₂ present showed a characteristic plateau-to-plateau profile, which implies a transition from the free Pt surface to the Pt surface completely covered by oxide film. This method allows determination of the onset potential for oxide formation and also the critical potential where a full monolayer of oxide is formed. This method applies to other fast surface reactions such as oxygen reduction reaction (ORR), and the results are enhanced by forced convection in the rotating disk electrode (RDE) experiments. The initial oxidation species was identified by charge and EQCM frequency analysis. Our results support the formation of a species with stoichiometry Pt₂O, for example, with an oxygen atom in the bridging position between two adjacent Pt atoms. In the second project, the stability of the Pt electrodes in acid media with Ag⁺ present was investigated. A substantial frequency drift (8.3 Hz cycle⁻¹, or 44 ng cm⁻² cycle⁻¹) was observed during Ag electrodeposition and stripping on the bare polycrystalline Pt surface. Cyclic voltammograms in pure HClO₄ solution showed nearly no frequency drift while the addition of 10⁻³ mol L⁻¹ Ag⁺ resulted in an immediate and characteristic frequency drift. The frequency drift appeared to be consistent with loss of material from the electrode surface and the ICP-MS detected a maximum Pt concentration of 2.3×10⁻⁶ mol L⁻¹ in solution due to Pt dissolution. The Pt concentration calculated from the EQCM frequency drift matched the ICP-MS results. This allowed the EQCM for direct investigation of Pt dissolution at different system temperatures, sweep rates, and potential ranges. The much higher rate of dissolution with Ag present than that in pure HClO₄ solution can be explained by the formation of Pt-Ag alloy during Ag underpotential deposition and the co-dissolution of Pt and Ag.

Page generated in 0.1121 seconds