1 |
Dissolution of oxygen reduction electrocatalysts in acidic environmentGu, Zhihui 15 May 2009 (has links)
Platinum (Pt) alloy nanoparticles are used as catalysts in electrochemical cells to
reduce oxygen to water and to oxidize hydrogen; the overall reaction converts chemical
energy into electrical energy. These nanocatalysts are deposited on a carbon substrate
and their catalytic function takes place in acid medium. This harsh environment causes
an undesired reaction, which is the dissolution of the metal atoms into the acid medium;
thus affecting the catalyst life. This dissertation aims to investigate the dissolution
mechanism of fuel cell cathode catalysts at the atomic level starting from the oxygen
reaction intermediates on the cathode catalyst surface and propose guidelines to improve
cathode catalysts durability based on our proposed mechanism. Density functional
theory is employed to study various possible scenarios with the goals of understanding
the mechanism of the metal atom dissolution process and establishing some guidelines
that permit a rational design of catalysts with better stability against dissolution. A
thermodynamic analysis of potential metal dissolution reactions in acid medium is
presented first, using density functional theory calculations to explore the relative
stabilities of transition metals in relation to that of Pt. The study is performed by
comparing the change in reaction Gibbs free energies for different metals in a given
dissolution reaction. Then, a series of density functional theory studies, tending to
investigate the adsorbed atomic oxygen absorption process from cathode catalyst surface
into its subsurface, includes: 1) the oxygen adsorption on various catalyst surfaces and
oxygen absorption in subsurface sites to figure out the minimum energy pathway and
energy barrier of on-surface oxygen migration and absorption into subsurface; 2) the oxygen coverage, the other oxygen reduction reaction intermediates, and water effects
on the oxygen absorption process according to reaction pathways, energy barriers, and
thermodynamic analysis; 3) the oxygen absorption process on several Pt-based alloys
with various compositions and components to find out the best alloy to inhibit atomic
oxygen absorption including both kinetic and thermodynamic analyses, and the effects
of such alloyed species on the inhibition process.
|
2 |
Platinum catalysts degradation by oxide-mediated platinum dissolution in PEMFCs (Proton Exchange Membrane Fuel Cells)Kim, Seok koo 1973- 02 March 2015 (has links)
Proton exchange membrane fuel cells (PEMFCs) have attracted great attention due to their high power density, low-temperature operation and high energy conversion efficiency. However, the high cost of Pt catalysts and durability problems hinder their commercialization. So their cost must be lowered drastically and their durability must be extended. In an effort to overcome these problems, there have been intensive efforts to enhance the activity, durability and to lower the price of catalysts by alloying with other less expensive metals. In particular, the sluggish kinetics of ORR caused by Pt oxide at cathode and Pt catalyst degradation by electrochemical surface area (ECSA) loss have been a huge research area where a lot of researchers have paid lots of attention to solve. In this regard, the objective of this dissertation is to evaluate a series of Pt catalyst electrode surface electrochemical reactions on PEMFC electrode in order to help searching new catalysts and enhancing system design, assist in the search for new catalysts and improved system design by suggesting the developed mechanism of electrocatalyst activity and stability (durability). We have been focused on understanding the oxide-mediated dissolution of Pt by using electrochemical experiment methods such as RRDE, EQCN, SECM with a combination of ICP-MS and computational simulation with COMSOL Multiphysics. Firstly, in chapter 3, we showed the oxide-mediated Pt dissolution rate and the influence of hydrogen and cation underpotential deposition on Pt dissolution. In chapter 4, we revealed oxygen reduction reaction (ORR) plays a significant role in Pt oxide formation and reduction that influences the Pt catalyst dissolution, resulting in accelerated Pt dissolution rate at specific potential range. Finally, we found out the nature of mobile species generated during PtO₂ reduction process which have been disputed as Pt ion or other mobile species and fulfilled computational simulation for evaluation of SECM experiment in chapter 5. Based on these experiments and simulation, we were able to explain some mechanism of literature results that already were reported but have not been clearly explained so far. In terms of the purpose of this dissertation, the mechanism of oxide-mediated Pt dissolution, influence of ORR to Pt oxide formation/reduction and Pt dissolution, the nature of mobile species generated during PtO₂ reduction process, are sure to be very helpful in developing new catalysts and enhancing system design and suggested operating conditions. / text
|
3 |
Optimization of N2O decomposition RhOx/ceria catalysts and design of a high N2-selective deNOx system for diesel vehiclesRico Pérez, Verónica 12 July 2013 (has links)
No description available.
|
4 |
Untersuchungen zur Elektrokatalyse von Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen (HT-PEMFCs) / Electrocatalytic Investigations on High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFCs)Hofmann, Constanze 14 January 2010 (has links)
No description available.
|
Page generated in 0.0422 seconds