• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts

Dole, Holly January 2016 (has links)
Air pollutants can cause poor air quality; however, the use of heterogeneous catalytic oxidation has been shown to be an efficient and cost-effective removal method. Some examples of commercial application of such catalysts include catalytic convertors in automobiles and industrial process exhausts. Research with regards to improving these technologies has included using less-expensive catalyst materials, increasing catalytic performance, and achieving higher efficiency. The concept of metal-support interaction (MSI) is one method of altering catalytic performance through changing the properties of the metal catalyst due to the interaction with the support material. Similarly, the phenomenon of electrochemical promotion of catalysis (EPOC) has also been shown to enhance the catalytic activity, however, through the application of a small electrical stimulus to a catalyst-working electrode deposited on a solid electrolyte (e.g. yttria-stablized zirconia). The properties of the metal catalyst are altered due to the movement of ions (in this case, O2-) from the electrolyte. Since its discovery, several factors were identified that are preventing EPOC from being commercialized, including the use of thick film catalysts. Implementing nano-catalysts makes this method competitive with typical heterogeneous catalysts; however, it has not been studied by many research groups. Furthermore, many heterogeneous catalytic studies have been performed separately for each of these phenomena; however, a connection between EPOC and MSI has yet to be fully understood. The overall objective of this project is to study the concept of EPOC over highly-dispersed nano-catalysts and determine how MSI relates to the change in catalytic activity. Supported nano-catalysts were synthesized, characterized, and evaluated for catalytic performance using model reactions. A reactor was designed to carry out the electrochemical studies, where the EPOC concept was successfully implemented and a relationship with MSI established. Furthermore, additional studies were conducted to determine the role of the O2- in the catalyst support and its relationship to MSI.
2

Carbon Monoxide Oxidation on Nanoparticle Catalysts and Gas Phase Reactions of Small Molecules and Volatile Organics with Metal Cations

Saoud, Khaled Mohammad Eqab 01 January 2005 (has links)
This dissertation demonstrates the application of a vapor phase method to synthesize supported and unsupported nanoparticle catalysts for CO oxidation. The method is based on the Laser Vaporization/Controlled Condensation (LVCC) technique. The first part of this dissertation presents the vapor phase synthesis and characterization of gold nanoparticles supported on a variety of oxide supports such as CeO2, TiO2, CuO and MgO.The results indicate that Au nanoparticles supported on CeO2 exhibit higher catalytic activity than Au supported on other oxides. The high activity of the Au/CeO2 catalyst is attributed to the strong interaction of Au with CeO2. The results also indicate that 5% Au loading on CeO2 has higher activity than 2% Au or 10% Au. When comparing the catalytic activity of Au/CeO2 prepared by physical (LVCC) and chemical (deposition-precipitation)methods, it was found that the catalytic activity is higher for Au/CeO2 prepared by the deposition-precipitation method.The effect of alloying Au and Cu nanoparticles on the catalytic activity for low temperature CO oxidation was also investigated. The unsupported Au-Cu alloy nanoparticle catalyst exhibits higher catalytic activity than the activities of the individualcomponents and their physical mixtures. The XRD data of Au-Cu alloy taken after the catalysis test indicates the formation of CuO within the bimetallic nanoparticles, whichimproves the catalytic activity of Au-Cu alloy nanoparticle.The second part of this dissertation investigates the gas phase reactions of Au+ and Cu+ with CO, O2 and H2O molecules using the Laser Vaporization ionization, High-Pressure Mass Spectrometry (LVI-HPMS) technique. The gas phase reactions resulting from the interactions of Au+ with CO and O2 molecules are investigated. Although multiple additions of CO and O2 molecules on Au+ have been observed at room temperature, no evidence was found of the production of CO2. This is attributed to the presence of water molecules which effectively replace the oxygen molecules on Au+ at room temperature.Finally, the role of the metal cations Au+ and Cu+ in initiating the gas phase polymerization of butadiene and isoprene vapors was investigated.
3

Theoretical study of correlation between structure and function for nanoparticle catalysts

Zhang, Liang, 1986 09 February 2015 (has links)
The science and technology of catalysis is more important today than at any other time in our history due to the grand energy and environment challenges we are facing. With the explosively growth of computation power nowadays, computer simulation can play an increasingly important role in the design of new catalysts, avoiding the costly trail-and-error attempts and facilitating the development cycle. The goal to inverse design of new materials with desired catalytic property was once far off, but now achievable. The major focus of this dissertation is to find the general rules that govern the catalytic performance of a nanoparticle as the function of its structure. Three types of multi-metallic nanoparticles have been investigated in this dissertation, core-shell, random alloy and alloy-core@shell. Significant structural rearrangement was found on Au@Pt and Pd@Pt nanoparticle, which is responsible for a dramatic improvement in catalytic performance. Nonlin- ear binding trends were found and modeled for random alloy nanoparticles, providing a prescription for tuning catalytic activity through alloying. Studies of ORR on Pd/Au random alloy NP and hydrogenation reaction on Rh/Ag random alloy NP revealed that binding on individual ensemble should be in- vestigated when large disparity of adsorbate affinity is presented between two alloying elements. In the alloy-core@shell system, I demostrated a general linear correlations between the adsorbate binding energy to the shell of an alloy-core@shell nanoparticle and the composition of the core. This relation- ship allows for interpolation of the properties of single-core@shell particles and an approach for tuning the catalytic activity of the particle. A series of promising catalysts were then predicted for ORR, HER and CO oxidation. As a first attempt to bridge the material gap, bimetallic nano clus- ter supported on CeO₂(111) was investigated for CO oxidation. A strong support-metal interaction induces a preferential segregation of the more reac- tive element to the NC-CeO₂ perimeter, generating an interface with the Au component. (Au-Cu)/CeO₂ was found to be optimal for catalyzing CO oxida- tion via a bifunctional mechanism. O₂ preferentially binds to the Cu-rich sites whereas CO binds to the Au-rich sites. A method called distributed replica dynamics (DRD) is proposed at last to utilize enormous distributed computing resources for molecular dynamics simulations of rare-event in chemical reac- tions. High efficiency can be achieved with an appropriate choice of N [subscript rep] and t [subscript rep] for long-time MD simulation. / text
4

Metal-Support Interaction and Electrochemical Promotion of Nano-Structured Catalysts for the Reverse Water Gas Shift Reaction

Panaritis, Christopher 01 April 2021 (has links)
The continued release of fossil-fuel derived carbon dioxide (CO₂) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO₂ into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO₂ can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO₂ reacts with renewable hydrogen (H₂) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO₂ into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability. Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO₂ conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O²⁻, H⁺, Na⁺, and K⁺, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in-situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction. The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (< 400 °C) by employing the MSI and EPOC phenomena to enhance the catalytic conversion. The electrochemical enhancement effect will lower energy requirements and allow the RWGS reaction to take place at moderate temperatures. Catalysts composed of Ru, Fe and Co were synthesized through the polyol synthesis technique and deposited on mixed-ionically conductive and ionically conductive supports to evaluate their performance towards the RWGS reaction and the MSI effect. The nano-structured catalysts are deposited as free-standing nanoparticles on solid electrolytes to in-situ promote the catalytic rate through the EPOC phenomenon. Furthermore, Density Functional Theory (DFT) calculations were performed to correlate theory with experiment and elucidate the role polarization has on the binding energy of reactant and intermediate species. The high dispersion of RuFe nanoparticles on ion-containing supports like samarium-doped ceria (SDC) and yttria-stabilized zirconia (YSZ) led to an increase in the RWGS activity due to the MSI effect. A direct correlation between experimental and DFT modeling was established signifying that polarization affected the binding energy of the CO molecule on the surface of Ru regardless of the type of ionic species in the solid electrolyte. The electrochemical enhancement towards the RWGS reaction has been achieved with iron-oxide (FeOₓ) nanowires on YSZ. The in-situ application of O²⁻ ions from YSZ maintained the most active state of Fe₃O₄ and FeO towards the RWGS reaction and allowed for persistent-promoted state that lasted long after potential application. Finally, the deposition of FeOₓ nanowires on Co₃O₄ resulted in the highest CO₂ conversion towards the RWGS reaction due to the metal-oxide interaction between both metals, signifying a self-sustained electro-promoted state.
5

Investigation of reaction networks and active sites in ethanol steam reforming reaction over Ni and Co-based catalysts

Law, Yeuk Ting 04 July 2013 (has links) (PDF)
Bimetallic catalysts have been widely exploited to improve the performance of various catalytic reactions. Understanding the surface properties and in particular, bimetallic interaction and support effect of the catalytic components is an important step towards rational catalyst design. In this thesis, Ni-Co thin film on polar ZnO single crystal was studied as a model catalyst for ethanol steam reforming reaction. The aim is to provide fundamental understanding of how the surface characteristics of the catalyst influence the mechanism and the efficiency of the reaction. This study focused firstly on the study of the interaction between Ni and Co in oxidative environment using Xray photoelectron spectroscopy (PES). Oxidation of Co is favoured over nickel and the surface is enriched with cobalt oxide. Secondly, Ni-Co thin film supported on polar Zn and O terminated ZnOwas studied by synchrotron based PES. The as deposited layer interacts readily with ZnO and Co is partially oxidized upon deposition, even at room temperature. The interaction of ethanol with Ni- Co/ZnO-Zn was studied by thermal desorption spectroscopy (TDS). Ethanol decomposes in different pathways on Ni and Co, in which C-C bond scission and methane production are favoured on Ni/ZnO-Zn while dehydrogenation is favoured on Co/ZnO-Zn. Finally, Ni-Co powder was studied byin-situ ambient pressure PES under reaction conditions in order to clarify the correspondence between the active state of the catalyst and the reaction activity. The product selectivity on Co catalyst is distinctly different from Ni and Ni-Co. Also, the decomposition of methyl group and the high amount of CO produced over Co is likely to be the cause for its high level of carbon deposition.
6

[en] THE STUDY OF METAL-SUPPORT INTERACTION ON BARIUM AND CESIUM PROMOTED RUTHENIUM CATALYSTS FOR THE AMMONIA SYNTHESIS / [pt] ESTUDO DA INTERAÇÃO METAL-SUPORTE EM CATALISADORES DE RUTÊNIO PROMOVIDOS POR BÁRIO E CÉSIO PARA A SÍNTESE DE AMÔNIA

MONICA PIRES NERY 24 June 2005 (has links)
[pt] O processo industrial para a síntese de amônia utiliza um catalisador de ferro triplamente promovido, operando em condições drásticas a temperaturas entre 400 e 700°C e a uma pressão bastante elevada (aproximadamente 300 atm). Novos catalisadores vêm sendo estudados, em substituição ao ferro, para aumentar ainda mais a produção de NH3. A principal vantagem dos catalisadores a base de rutênio é que eles são menos sensíveis à contaminação pela amônia que os catalisadores a base de ferro. O objetivo deste trabalho foi avaliar catalisadores de rutênio suportados em zeólitas e hidrotalcita promovidos por cátions básicos para a síntese de amônia. Foi verificada a influência do tipo de suporte nos catalisadores de rutênio, do tipo e forma de introdução dos precursores de rutênio, o papel da adição de cátions promotores (Ba e Cs) sobre a interação metal-suporte e na atividade dos catalisadores de rutênio na reação de síntese de amônia. Os catalisadores de rutênio suportados na hidrotalcita apresentaram as maiores conversões na reação de síntese de amônia. Eles apresentaram os mais altos níveis de dispersão e redução das partículas metálicas. O bário, apesar de ter diminuído menos a interação do rutênio com o suporte, se mostrou um promotor mais efetivo na reação de síntese de amônia que o césio. A ordem de introdução do bário apresentou efeitos diferentes, dependendo do suporte, sobre o desempenho dos catalisadores de rutênio. O método de impregnação com carbonila de rutênio se mostrou o mais efetivo, conduzindo a catalisadores de rutênio mais básicos e mais ativos na reação de síntese de amônia. / [en] The industrial ammonia synthesis process uses a triple promoted iron catalyst, operating at drastic temperature conditions between 673K and 973K, and high pressure (300atm). New catalysts have been studied, replacing iron, to increase NH3 production. The main advantage of Ru-based catalysts is that they are less sensitive to poisoning by ammonia than Fe-based catalysts. The aim of this work was to evaluate ruthenium catalysts supported on zeolites and hydrotalcite promoted by basic cations for ammonia synthesis reaction. The influence of the support type on the ruthenium catalysts and of introduction way of the ruthenium precursors was verified. Also the hole of the cationic promoters (Ba and Cs) on the metal-support interaction and on the ruthenium catalysts activity in the ammonia synthesis reaction was examined. The ruthenium catalysts supported on hydrotalcite had the highest conversion in the ammonia synthesis reaction. They presented the highest degrees of dispersion and reduction of metallic particles. The barium, despite having decreased the interaction between the ruthenium and the support, showed to be a more effective promoter on the synthesis of ammonia than the cesium. The barium introduction order resulted in different effects over the ruthenium catalysts performance depending on the support. The impregnation method with ruthenium carbonil was the most effective, leading to more basic ruthenium catalysts and more actives in the ammonia synthesis reaction.
7

Synthesis, RNA Binding and Antibacterial Studies of 2-DOS Mimetics AND Development of Polymer Supported Nanoparticle Catalysts for Nitroarene and Azide Reduction

Udumula, Venkata Reddy 01 June 2015 (has links)
Project I 2-Deoxystreptamine (2-DOS), the most conserved central scaffold of aminoglycosides, is known to specifically recognize the 5'-GU-'3 sequence step through highly conserved hydrogen bonds and electrostatic interactions within and without the context of aminoglycosides (Figure 1a). We proposed that a novel monomeric unnatural amino acid building block using 2-DOS as a template would allow us to develop RNA binding molecules with higher affinity and selectivity than those currently available. Conjugating two or more of the monomeric building blocks by an amide bond would introduce extra hydrogen bonding donors and acceptors that are absent in natural aminoglycosides and increase specificity of binding to a target RNA through a network of hydrogen bonds. In addition, the amide conjugation between the monomeric building blocks places two GU-base recognizing amines at 5 Å… distance, which is equal to the distance of neighboring base stacks in dsRNAs We hypothesized that targeting dsRNAs containing multiple consecutive 5'-GU-'3 sequence steps would become possible by connecting two or more of the monomeric building blocks by amide bonds. According to the proposed hypothesis, we designed three dimeric 2-DOS compounds connected by an amide bond. These three targets include the dimeric 2-DOS substrate connected by an amide bond, the dimeric 2-DOS containing the sugar moiety from Neamine, and a dimeric 2-DOS connected by a urea linker. These compounds were then tested for sequence specific binding against 8 different RNA strands, and for antibacterial activity against E. coli, actinobacter baumannii and klebsiella. Project II A dual optimization approach was used for to enhance the catalytic activity and chemoselectivity for nitro reduction. In this approach the composition of the nanoparticles and electronics effects of the polymer were studied towards nitro reduction. Bimetallic Ruthenium-Cobalt nanoparticles showed exceptional catalytic activity and chemoselectivity compared to monometallic Ruthenium nanoparticles. The electronic effects of the polymer also had a significant effect on the catalytic activity of the bimetallic nanoparticles. The electron-deficient poly(4-trifluoromethylstyrene) supported bimetallic nanoparticles undergo nitro reduction in 20 minutes at room temperature, whereas electron-rich poly(4-methylstyrene) and poly(4-methoxystyrene) supported bimetallic nanoparticles to longer reaction times to go to completion. Electronics of the polymers also effects the change in mechanism of nitroreduction. Polystyrene bimetallic Ruthenium-Cobalt nanoparticles showed excellent yields and chemoselectivity towards nitro functional group in the presence of easily reducible functional groups like alkenes, alkynes, allyl ethers, propargyl ethers. Monometallic ruthenium nanoparticles also showed excellent reactivity and chemoselectivity towards azide reduction in the presence of easily reducible functional groups. Interestingly monometallic ruthenium nanoparticles showed regioselective reduction of primary azides in the presence of secondary and benzylic azides, also aromatic azides can be selectively reduced in the presence of secondary azides. These polystyrene supported nanoparticles are heterogeneous and are easily separated from the reaction mixture and reused multiple times without significant of catalytic activity.
8

Optimization of N2O decomposition RhOx/ceria catalysts and design of a high N2-selective deNOx system for diesel vehicles

Rico Pérez, Verónica 12 July 2013 (has links)
No description available.
9

Mesoporous carbon supported NiMo catalyst for the hydrotreating of coker gas oil

Narayanasarma, Prabhu 11 July 2011
New catalyst development for the hydrotreating process, employing functionalized mesoporous carbon (mC) support is studied. mC support was prepared by the volume templating of alkali modified SBA-15 using sucrose as the carbon source and then functionalized using nitric acid of various concentrations (upto 8M HNO3). A series of NiMo catalysts (12% Mo and 2.4% Ni) were prepared using these functionalized mC supports. The supports and catalysts were characterized by N2 physisorption, SAXS, XRD, FTIR, TGA, SEM, TEM, H2-TPR and HRTEM. SAXS results indicated mild reduction in ordered structure of mesoporous carbons after functionalization. N2 physisorption analysis indicated progressive reduction in surface area and pore volume with the increase in nitric acid concentration. Enhancement of surface functional groups and acidity after functionalization were observed through FTIR spectroscopy and Boehm titration. SEM images showed the retention of needle like morphology in all functionalized carbon supports. TEM images showed that the increase in nitric acid concentration causes excessive etching, resulting in the reduction of ordered structure of functionalized mesoporous carbons. Hydrotreating study of these NiMo/mC catalysts were carried out under industrial operating conditions in a laboratory scale trickle bed reactor using coker light gas oil derived from Athabasca bitumen as feedstock. NiMo catalyst supported on 6M acid treated mC (i.e. NiMo/mC-6M) showed the highest activity due to higher surface functional groups, higher acidity and better textural properties. The HDS and HDN activities of NiMo/mC-6M catalyst were higher than that of NiMo/ã-Al2O3 catalyst owing to lower support metal interaction (SMI), higher surface area and effective functionalization. Using the mC-6M support, NiMo catalysts with different metal loading (12 27% Mo, 2.4 to 5.4% Ni) were prepared and characterized. Hydrotreating activity study of these catalysts indicated that the catalyst with 22% Mo and 2.9% Ni loading was the optimum catalyst on 6M functionalized mC support. Higher metal loading (>22%Mo) led to excessive pore blockage and improper metal dispersion resulting in decreased activity. Kinetic study of the optimum catalyst was carried out by varying temperature (330°C to 370°C), gas-to-oil ratio (400 1000 Nm3/m3), LHSV (1.0 to 2.5 hr-1) and pressure (7.8 to 9.8 MPa) and the data was fitted by non-linear regression method using power law model. The calculated reaction orders and activation energies were 2.8, 1.5 and 189 KJ/mol, 98.9 KJ/mol for HDS and HDN, respectively. The results of HRTEM and H2-TPR indicated lower SMI in mC supported catalyst resulting in the generation of qualitatively Type-II like NiMoS phase on functionalized mC supports, which is considered to be very active for hydrotreating. The hydrotreating activity of the optimum catalyst was higher than that of commercial catalyst (supported on ã-Al2O3). Long term deactivation experiment carried out over a total period of 10 weeks confirmed the durability of NiMo/mC catalyst for the duration of operation. This study reveals the immense capability of functionalized mC supports to become the potential alternative catalyst support to conventional ã-Al2O3 for the hydrotreating of gas oil feedstocks.
10

Mesoporous carbon supported NiMo catalyst for the hydrotreating of coker gas oil

Narayanasarma, Prabhu 11 July 2011 (has links)
New catalyst development for the hydrotreating process, employing functionalized mesoporous carbon (mC) support is studied. mC support was prepared by the volume templating of alkali modified SBA-15 using sucrose as the carbon source and then functionalized using nitric acid of various concentrations (upto 8M HNO3). A series of NiMo catalysts (12% Mo and 2.4% Ni) were prepared using these functionalized mC supports. The supports and catalysts were characterized by N2 physisorption, SAXS, XRD, FTIR, TGA, SEM, TEM, H2-TPR and HRTEM. SAXS results indicated mild reduction in ordered structure of mesoporous carbons after functionalization. N2 physisorption analysis indicated progressive reduction in surface area and pore volume with the increase in nitric acid concentration. Enhancement of surface functional groups and acidity after functionalization were observed through FTIR spectroscopy and Boehm titration. SEM images showed the retention of needle like morphology in all functionalized carbon supports. TEM images showed that the increase in nitric acid concentration causes excessive etching, resulting in the reduction of ordered structure of functionalized mesoporous carbons. Hydrotreating study of these NiMo/mC catalysts were carried out under industrial operating conditions in a laboratory scale trickle bed reactor using coker light gas oil derived from Athabasca bitumen as feedstock. NiMo catalyst supported on 6M acid treated mC (i.e. NiMo/mC-6M) showed the highest activity due to higher surface functional groups, higher acidity and better textural properties. The HDS and HDN activities of NiMo/mC-6M catalyst were higher than that of NiMo/ã-Al2O3 catalyst owing to lower support metal interaction (SMI), higher surface area and effective functionalization. Using the mC-6M support, NiMo catalysts with different metal loading (12 27% Mo, 2.4 to 5.4% Ni) were prepared and characterized. Hydrotreating activity study of these catalysts indicated that the catalyst with 22% Mo and 2.9% Ni loading was the optimum catalyst on 6M functionalized mC support. Higher metal loading (>22%Mo) led to excessive pore blockage and improper metal dispersion resulting in decreased activity. Kinetic study of the optimum catalyst was carried out by varying temperature (330°C to 370°C), gas-to-oil ratio (400 1000 Nm3/m3), LHSV (1.0 to 2.5 hr-1) and pressure (7.8 to 9.8 MPa) and the data was fitted by non-linear regression method using power law model. The calculated reaction orders and activation energies were 2.8, 1.5 and 189 KJ/mol, 98.9 KJ/mol for HDS and HDN, respectively. The results of HRTEM and H2-TPR indicated lower SMI in mC supported catalyst resulting in the generation of qualitatively Type-II like NiMoS phase on functionalized mC supports, which is considered to be very active for hydrotreating. The hydrotreating activity of the optimum catalyst was higher than that of commercial catalyst (supported on ã-Al2O3). Long term deactivation experiment carried out over a total period of 10 weeks confirmed the durability of NiMo/mC catalyst for the duration of operation. This study reveals the immense capability of functionalized mC supports to become the potential alternative catalyst support to conventional ã-Al2O3 for the hydrotreating of gas oil feedstocks.

Page generated in 0.1218 seconds