• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Interconnection Network for a Cache Coherent System on FPGAs

Mirian, Vincent 12 January 2011 (has links)
Field-Programmable Gate Arrays (FPGAs) systems now comprise many processing elements that are processors running software and hardware engines used to accelerate specific functions. To make the programming of such a system simpler, it is easiest to think of a shared-memory environment, much like in current multi-core processor systems. This thesis introduces a novel, shared-memory, cache-coherent infrastructure for heterogeneous systems implemented on FPGAs that can then form the basis of a shared-memory programming model for heterogeneous systems. With simulation results, it is shown that the cache-coherent infrastructure outperforms the infrastructure of Woods [1] with a speedup of 1.10. The thesis explores the various configurations of the cache interconnection network and the benefit of the cache-to-cache cache line data transfer with its impact on main memory access. Finally, the thesis shows the cache-coherent infrastructure has very little overhead when using its cache coherence implementation.
2

An Interconnection Network for a Cache Coherent System on FPGAs

Mirian, Vincent 12 January 2011 (has links)
Field-Programmable Gate Arrays (FPGAs) systems now comprise many processing elements that are processors running software and hardware engines used to accelerate specific functions. To make the programming of such a system simpler, it is easiest to think of a shared-memory environment, much like in current multi-core processor systems. This thesis introduces a novel, shared-memory, cache-coherent infrastructure for heterogeneous systems implemented on FPGAs that can then form the basis of a shared-memory programming model for heterogeneous systems. With simulation results, it is shown that the cache-coherent infrastructure outperforms the infrastructure of Woods [1] with a speedup of 1.10. The thesis explores the various configurations of the cache interconnection network and the benefit of the cache-to-cache cache line data transfer with its impact on main memory access. Finally, the thesis shows the cache-coherent infrastructure has very little overhead when using its cache coherence implementation.

Page generated in 0.0314 seconds