Spelling suggestions: "subject:"cublic administration -- eritrea"" "subject:"cublic administration -- eritrean""
1 |
The application of decision support systems in the Eritrean public sectorSahle Habtemichael, Faniel 12 1900 (has links)
Thesis (MPA)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: The traditional skills required in government-wide local knowledge, sound political
judgment and concern for the welfare of people-are still essential in the global information
society. But, to be more effective, these skills now have to be supported by the new
decision-making techniques of operations research and decision support systems. The
capacity of the human mind to handle complex issues is limited. This situation of
complexity and incapacity makes the application of operations research techniques and
electronic DSS essential for good governance outcomes.
Operations research is a multidisciplinary discipline that requires a team approach to
decision making. It is based on systems analysis approach because of its preoccupation with
interconnections among parts rather than within the parts themselves. This systems
approach allows the optimization of an organization's overall goals, not just those of
isolated departments.
Optimization is one of the functions of operations research techniques. Linear programming
models are most effective at the operational level of decision making with a single objective
where scarce or limited resources must be allocated or used in an optimal manner. At the
policy level where there are many uncertainties and conflicting objectives, multiobjective
programming is more suitable. On the other hand, dynamic programming is flexible and is
particularly applied whenever a sequence of decisions must be made and the goal is to find
the combination of decisions that optimizes the overall effectiveness of the entire set of
decisions. However, when a problem is too complex to be treated by numerical optimization
techniques, simulation is used. That is when the problem either cannot be formulated for
optimization, because the formulation is too large, there are too many interactions among
the variables, or the problem is stochastic (probabilistic) in nature. Despite the analytical
power of operations research, many real-world problems are not amenable to direct
analytical solution by known mathematical techniques. Hence, in the absence of exact
methods to solutions, we usually resort to heuristics, i.e. finding a good but not necessarily
the best solution.
Other problems encountered by public sector agencies include service stations (waiting
lines), inventory levels, forecasting, and project scheduling, which all need decision support
systems. To reduce the adverse impact of waiting to acceptable levels one has to minimize costs associated with providing service and those associated with waiting time. For smooth
operations, inventory of goods must be kept to an acceptable level to minimize setup or
ordering, inventory holding, and shortage (public complaints, and loss of good will and
sales) costs. Forecasting is crucial as most managerial decisions are based on projected
information and policy analysis is almost always about future outcomes. Many government
policies and programs are implemented through projects. Project managers must know how
long a specific project will take to finish, what the critical tasks are, and what the
probability of completing the project within a given time span is.
Successful applications of operations research and decision support systems in the public
sector have been recorded including in the areas of the military, transportation, crime and
justice, police units, energy, natural resources, facility location, and land use planning.
However, operations research applications are not without impediments. Technical and
institutional barriers are some of the problems encountered in the effort to apply operations
research in the public sector. Similarly, reasons for the slow growth of decision support
systems include lack of user demand, lack of system designer motivation, lack of system
designer expertise, reluctance to change, and increased risk of failure
In the Eritrean public sector, the low level of awareness of operations research and decision
support systems is reflected in the inadequacy of addressing multicriteria decision
processes, the lack and lor inappropriate selection of decision support systems, improper
project management techniques, suboptimal facility locations and service stations, the low
level of multidisciplinary approach, and the absence of national standards for pollution
control. In general, constraints such as the lack of capacity, awareness, know-how, and
software, are rampant.
The study concludes that policy-making processes should incorporate opportunities to
exercise choices and explore rational options. These rational options are the results of
appropriate interface of human, operations research and decision support systems. / AFRIKAANSE OPSOMMING: Die tradisionele vaardighede wat van 'n regering verwag word - wye kennis van plaaslike
omstandighede, goeie politieke oordeel en besorgdheid oor die welvaart van mense - was
nog altyd belangrik in die moderne wêreld. Hierdie vaardighede moet egter ondersteun
word deur die nuwe besluitnemingstegnieke van operasionele navorsing en besluitnemings
ondersteuningstelsels om effektief te wees. Die vermoë van die menslike brein om
komplekse kwessies te hanteer, is beperk. Hierdie situasie van kompleksheid aan die een
kant en onvermoë aan die ander kant maak die aanwending van operasionele navorsingstegnieke
en elektroniese besluitneming nodig vir goeie regeringsuitkomste.
Operasionele navorsing is 'n multidisiplinêre disipline wat 'n spanbenadering tot
besluitneming benodig. Dit is baseer op die sisteemanalise benadering omdat dit gaan oor
interkonneksies tussen onderdele en nie soseer oor die onderdele self nie. Hierdie
sisteembenadering maak die optimisering van die sisteem se oorhoofse doelwitte moontlik,
nie net die doelwitte van geïsoleerde departemente nie
Optimisasie is een van die funksies van operasionele navorsing. Liniêre programmeringsmodelle
is meer effektief op die operasionele vlak van besluitneming met 'n enkel doelwit
waar skaars of beperkte bronne toegewys of gebruik moet word op 'n optimale wyse. Op
die beleidsvlak waar baie onsekerhede en botsende doelwitte voorkom, is multi-doelwit
programmering meer geskik. Aan die ander kant is dinamiese programmering meer
toepaslik en buigsaam, veral as dit toegepas word waar 'n reeks besluite geneem moet word
en die doel is om 'n kombinasie van besluite te vind wat die oorhoofse effektiwiteit van die
hele stel besluite optimiseer. Sekere probleme is egter te kompleks om met numeriese
optimisering op te los, omdat die probleem nie geprogrammeer kan word vir optimisering
nie, omdat die formulasie te groot is, daar te veel interaksies tussen die veranderlikes is, of
die probleem stogasties van aard is. Dan kan simulasies oorweeg word om oplossings te
probeer vind. Ten spyte van die analitiese krag van operasionele navorsing, kan baie
werklike probleme nie direk deur analitiese wiskundige tegnieke opgelos word nie - altans
nie deur bekende wiskundige tegnieke nie. As 'n presiese oplossing nie moontlik is nie, kan
kan 'n heuristiese oplossing ondersoek word, d.w.s. 'n goeie, maar nie noodwendig die
beste oplossing nie. Ander probleme wat deur die openbare sektor ondervind word, sluit in diensstasies,
inventarisvlakke, voorspellings, en projekskedulering. Hulle benodig almal
besluitnemingsstelsels vir effektiewe oplossings. Om die wagtydperk te verminder tot 'n
aanvaarbare vlak moet die koste verbonde aan die verskaffing van die diens en die koste
verbonde aan wagtydperke minirniseer word. Om 'n operasie glad te laat verloop moet die
inventaris van goedere op 'n aanvaarbare vlak gehou word om die koste van bestellings, die
byhou van voorrade en tekorte (klagtes van die publiek, die verlies aan vertroue en
verkope) te minirniseer. Voorspelling is van die uiterste belang vir hierdie doel, omdat
bestuursbesluite baseer is op geskatte syfers en beleidsontleding betrekking het op
toekomstige uitkomste. Baie regeringsbeleide en -programme word deur projekte
geïmplementeer. Projekbestuurders moet weet hoe lank dit sal neem om 'n projek te
voltooi, wat die belangrike take is en hoe waarskynlik dit is dat die projek betyds voltooi
sal word.
Operasionele navorsing en besluitnemingsondersteuning stelsels is al suksesvol aangewend
in die volgende openbare sektore: militêre funksies, vervoer, misdaad en justisie, die
polisie, energie, natuurlike hulpbronne, en die beplanning van grondgebruik. Tegniese en
ander hindernisse word egter soms ondervind by die gebruik van operasionele
navorsingstegnieke in die openbare sektor. Redes hoekom die gebruik van sulke stelsels so
stadig toeneem, sluit in die gebrek aan aanvraag van verbruikers, die gebrek aan
stelselontwerp motivering, die gebrek aan stelselontwerp vaardighede, onwilligheid om te
verander en die groter risiko van mislukking.
In die openbare sektor van Eritrea word die lae vlak van bewustheid van operasionele
navorsing en besluitnemingsondersteuning stelsels gereflekteer in 'n onvermoë om dit te
gebruik, die gebrek aan of verkeerde keuse van sulke hulpmiddels, verkeerde
bestuurstegnieke, suboptimale plasing van dienspunte, die afwesigheid van multi-disiplinêre
benaderings, en die afwesigheid van nasionale standaarde vir die beheer van besoedeling.
Beperkings soos 'n gebrek aan kapasiteit, bewustheid, kennis en sagteware kom algemeen
voor.
In hierdie studie word daar tot die gevolgtrekking gekom dat beleidmakende prosesse die
geleentheid behoort in te sluit om keuses te maak en om verskillende opsies te toets.
Hierdie rasionele opsies is die gevolg van die regte interaksie tussen die mens, operasionele
navorsing en besluitnemingsondersteuning stelsels.
|
Page generated in 0.1259 seconds