• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de l'accélération de la gravité sur les réponses cardio-respiratoires à l'exercice chez l'homme / The influence of acceleration on human cardio-respiratory responses during physical exercise

Bonjour, Julien 06 December 2010 (has links)
Afin de mieux comprendre et de préciser les réponses cardio-respiratoires chez l'homme lors d'exercices physiques effectués à des niveaux de gravité (ag) différents, des expérimentations en hypergravité et des analyses de données obtenues en microgravité ont été réalisées.Ainsi nous avons pu identifier les variables influençant la cinétique des réponses cardio-pulmonaires en fonction d‘ag lors de la pratique d'exercices physiques, et proposer un modèle prédictif de la dépense énergétique en fonction d'ag. Il ressort de nos analyses que les effets de ag sur la consommation d'oxygène (VO2) sont déterminés par des changements de la puissance métabolique interne et non pas par des changements de la puissance mécanique ou de la VO2 de repos. Quant à la consommation maximale d'oxygène (VO2 max) estimée, celle-ci diminue de façon importante en fonction de l'augmentation d'ag. Selon nos estimations, la VO2 max serait atteinte au repos à une valeur d'ag de 4.5 G. Ceci indiquerait que l'être humain serait dans l'impossibilité d'effectuer le moindre travail sur les plus grandes planètes du système solaire, rendant ainsi leur colonisation impossible / In order to better understand and clarify the cardio-respiratory responses of humans to physical exercise at varying levels of gravity acceleration (ag) we have set up experiments in hypergravity and we have analyzed data obtained in microgravity. We have thus been able to identify the variables that influence the kinetics of cardio-pulmonary Reponses in function of ag during physical exercise and propose a model that predicts the amount of energy spent when ag varies. From our analysis, it appears that the effects of ag on oxygen consumption (VO2) depend on variations in internal metabolic power and not at all on changes in mechanical power nor on the rest oxygen consumption. We found out that the estimated maximal consumption (VO2 max) of oxygen goes down considerably when ag augments. According to our estimations, the VO2 max is likely to be reached at rest when ag is 4.5 G. T. This seems to indicate that a human would be unable to perform the slightest work on the largest planets of our solar system, thus making the colonization of these planets impossible
2

Influence de l'accélération de la gravité sur les réponses cardio-respiratoires à l'exercice chez l'homme

Bonjour, Julien 06 December 2010 (has links) (PDF)
Afin de mieux comprendre et de préciser les réponses cardio-respiratoires chez l'homme lors d'exercices physiques effectués à des niveaux de gravité (ag) différents, des expérimentations en hypergravité et des analyses de données obtenues en microgravité ont été réalisées.Ainsi nous avons pu identifier les variables influençant la cinétique des réponses cardio-pulmonaires en fonction d'ag lors de la pratique d'exercices physiques, et proposer un modèle prédictif de la dépense énergétique en fonction d'ag. Il ressort de nos analyses que les effets de ag sur la consommation d'oxygène (VO2) sont déterminés par des changements de la puissance métabolique interne et non pas par des changements de la puissance mécanique ou de la VO2 de repos. Quant à la consommation maximale d'oxygène (VO2 max) estimée, celle-ci diminue de façon importante en fonction de l'augmentation d'ag. Selon nos estimations, la VO2 max serait atteinte au repos à une valeur d'ag de 4.5 G. Ceci indiquerait que l'être humain serait dans l'impossibilité d'effectuer le moindre travail sur les plus grandes planètes du système solaire, rendant ainsi leur colonisation impossible.
3

Mesure et modélisation bioénergétique des exercices intermittents : application au tennis

Botton, Florent 03 November 2011 (has links) (PDF)
L'objectif de ce travail était de valider une méthode simple permettant de déterminer la sollicitation des métabolismes aérobie et anaérobie en cours d'activité en prenant l'exemple du tennis. Son principe général est de séquencer l'activité globale composite en sous-activités appelées activités fondamentales AF et de déterminer pour chacune d'entre elles la consigne énergétique DEc(i) afin de modéliser l'adaptation des filières énergétiques grâce au modèle bioénergétique Astrabio©. Des étalonnages permettent d'obtenir les fonctions d'astreinte qui relient DEc(i) à un paramètre mécanique M pertinent, vitesse de déplacement ou cadence de coups, pour les 6 AF sélectionnées au tennis. Une méthode d'analyse vidéo simple utilisant une seule caméra est appliquée lors des matchs de tennis pour déterminer les AF et estimer M. Ces paramètres sont introduits dans le modèle Astrabio© qui détermine la DEc(i) de chaque AF, DE aérobie et DE anaérobie par différence. Les quantités d'énergie aérobie prédites à chaque jeu des matchs ne présentent pas de différence statistique avec celles réellement mesurées par la méthode d'analyse directe de DE (K4b2). Elle met en évidence qu'en dépit d'une DE aérobie moyenne assez faible comprise entre 40% et 60% VO2max, le tennis se caractérise en réalité par des efforts supra-maximaux pouvant atteindre 300% VO2max lors des frappes de balle et le métabolisme anaérobie représente environ 30% de l'énergie totale dépensée sur un match. Cette méthode présente l'intérêt majeur d'être facilement applicable et de décrire l'astreinte réelle d'une activité en fournissant une estimation des DE aérobie et anaérobie à partir de l'analyse vidéo de l'activité
4

Mesure et modélisation bioénergétique des exercices intermittents : application au tennis / Measure and model of energy expenditure during intermittent exercises : tennis application

Botton, Florent 03 November 2011 (has links)
L’objectif de ce travail était de valider une méthode simple permettant de déterminer la sollicitation des métabolismes aérobie et anaérobie en cours d’activité en prenant l’exemple du tennis. Son principe général est de séquencer l’activité globale composite en sous-activités appelées activités fondamentales AF et de déterminer pour chacune d’entre elles la consigne énergétique DEc(i) afin de modéliser l’adaptation des filières énergétiques grâce au modèle bioénergétique Astrabio©. Des étalonnages permettent d’obtenir les fonctions d’astreinte qui relient DEc(i) à un paramètre mécanique M pertinent, vitesse de déplacement ou cadence de coups, pour les 6 AF sélectionnées au tennis. Une méthode d’analyse vidéo simple utilisant une seule caméra est appliquée lors des matchs de tennis pour déterminer les AF et estimer M. Ces paramètres sont introduits dans le modèle Astrabio© qui détermine la DEc(i) de chaque AF, DE aérobie et DE anaérobie par différence. Les quantités d’énergie aérobie prédites à chaque jeu des matchs ne présentent pas de différence statistique avec celles réellement mesurées par la méthode d’analyse directe de DE (K4b2). Elle met en évidence qu’en dépit d’une DE aérobie moyenne assez faible comprise entre 40% et 60% VO2max, le tennis se caractérise en réalité par des efforts supra-maximaux pouvant atteindre 300% VO2max lors des frappes de balle et le métabolisme anaérobie représente environ 30% de l’énergie totale dépensée sur un match. Cette méthode présente l’intérêt majeur d’être facilement applicable et de décrire l’astreinte réelle d’une activité en fournissant une estimation des DE aérobie et anaérobie à partir de l’analyse vidéo de l’activité / The aim of this study was to present a simple method to access the aerobic and anaerobic components of energy expenditure during activities as tennis. The principle consists in dividing the exercise into several fundamental activities (FA) based on a video recording and to estimate the metabolic power (MP) of each FA, the aerobic energy expenditure (EEO2mod) and the anaerobic energy expenditure thanks to the Astrabio© model. Six FA are selected and each FA is described by a “strain function” connecting MP to the selected pertinent mechanical variable M (speed running V and events frequency ω). The video analysis is used to determine FA, V and ω during tennis match. The parameters V and ω are introduced in the Astrabio© model to calculate MP of each FA. Then, this model calculated the aerobic energy expenditure (EEO2mod) in terms of MP and the anaerobic energy expenditures was calculated by substracting this (EEO2mod). There was no significant difference between calculated and measured oxygen consumptions (p<0.05). This method shows that even when the aerobic EE average is quite low and nearing 50% of VO2max, the total energy expenditure of a point can reach up 2 or 3 times the VO2max of the subjects during points and strokes. In tennis anaerobic metabolism can account for around 30% of the total energy expenditure per game, and almost 70% during points. The interest of this method is to provide a good estimation of aerobic and anaerobic energy expenditures thanks to a simple video analysis. This method presents the advantage that it is easy to apply and requires only simple and inexpensive equipment: a camera, a computer, and a tracking software

Page generated in 0.0741 seconds