Spelling suggestions: "subject:"pulse compression"" "subject:"pulse 8compression""
1 |
Intracavity frequency modulation of modelocked lasersRobledo, Victor Joel Pinto January 1994 (has links)
No description available.
|
2 |
Pulse compression filter design for ultrasonic non-destructivetesting林鴻耀, Lam, Hung-yiu. January 1994 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
|
3 |
Pulse compression filter design for ultrasonic non-destructive testing /Lam, Hung-yiu. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1997. / Includes bibliographical references (leaf 98-101).
|
4 |
Elektromagnetiese pulskompressie met behulp van versadigbare magnetiese kerneSwart, Petrus Hermanus 02 March 2015 (has links)
M.Ing. / Pulse Compression is a technique that may be employed for the generation of extremely high amplitude current and voltage pulses. These pulses can be as short as 50 to 100 ns, and may have amplitudes in the kiloampere and kilovolt ranges. Pulse Compression entails the compression of relatively "flat" pulses in the time domain, to pulses of very high amplitudes and extremely short duration. The pulse amplitudes and durations necessary to be achieved in this research, lie in the range where the switching speeds and other parameters of semiconductors are inadequate and where even the working life of conventional gas discharge apparatus are drastically reduced by the extreme switching demands. The burden of excessively high current densities and unmanageable current rise-rates can be transferred from the semiconductor switches to electromagnetic switches, by making use of pulse compression. Pulse compression can be carried out simultaneously or separately for the compression of the current or voltage content of pulses derived from slowly switched sources, to obtain pulses of extremely short duration and very high amplitudes. The main theme of this dissertation is Current compression. Current compression is accomplished through series-resonance in capacitors and saturable inductors connected in a transmission-line configuration. Energy is transferred in this process from one stage to the next, with reduction in pulse-time in each successive stage and a commensurate increase in amplitude. The generated pulses can attain gigawatt amplitudes and nanosecond durations, whilst loading on the semiconducting switches remains low. In addition to design of the pulse-compressor proper, the work also includes design and development of a voltage-controlled pulse power supply, suitable for generating the initial pulses which are to be compressed. Multistage pulse compression is based on the non-linear characteristics of saturable inductors. Dynamic analogue-time simulation is indispensable in a study thereof, as new theory has to be validated and because non-linear analysis is complex and capable only of being executed by employing approximation methods. Because of the difficulties involved, a considerable amount of attention has been devoted to the development of suitable analogue-dynamic simulation programs for execution on a digital computer. A numerical technique has been developed to express non-linear parameters in differential form. This technique makes it possible to model and simulate virtually any non-linear, physically realizable lumped parameter system with ease. The program is based on State Space techniques and has been developed for its versatility, to accomplish the simulation of a wide variety of circuit configurations.
|
5 |
Pulse compression and dispersion control in ultrafast opticsChauhan, Vikrant Chauhan Kumar 22 January 2011 (has links)
Pulse Compression and Dispersion Control in Ultrafast Optics
Vikrant K. Chauhan
116 Pages
Directed by Dr. Rick P. Trebino
In this thesis, we introduced novel pulse compressors that are easy to align and which also compensate for higher order dispersion terms. They use a single dispersive element or a combination of dispersive elements in single-element-geometry. They solve the problem of extra-cavity pulse compression by providing control of the pulse width in almost all of the experiments performed using ultrashort pulses, and they even compensate for higher order dispersion. We performed full spatiotemporal characterization of these compressors and demonstrated their performance. We also developed a theoretical simulation of pulse compressors which is based on a matrix based formalism. It models the full spatiotemporal characteristics of any dispersion control system. We also introduced a simple equation, in its most general form, to relate the total dispersion and magnification introduced by an arbitrary sequence of dispersive devices. Pulse compressor characterization was done using interferometric measurements in the experiments presented in this work, but we also developed a method to measure pulses that uses polarization gating FROG for measuring two unknown pulses. In the last part, we briefly discuss the designing of a high energy chirped pulse amplification system.
|
6 |
A DSP controller for a low cost radar interfaceDay, Richard Harvey January 1999 (has links)
No description available.
|
7 |
Effect of Photoacoustic Radar Chirp Parameters on Profilometric InformationSun, Zuwen January 2018 (has links)
Photoacoustic imaging for biomedical application has attracted much research in recent years. To date, most of the work has focused on pulsed photoacoustics. Recent developments have seen the implementation of a radar pulse compression methodology into continuous wave photoacoustic modality, however very little theory has been developed in support of this approach. In this thesis, the one-dimensional theory of radar photoacousticsfor pulse compressedlinear frequency modulated continuous sinusoidal laserphotoacoustics is developed.The effect of the chirp parameters on the corresponding photoacoustic signal is investigated, and guidelines for choosing the chirp parametersfor absorber profilometric detectionare given based on the developed theory and simulations. Simulated results are also compared to available experimental results and show a good agreement.
|
8 |
Ultra-Compact Grating-Based Monolithic Optical Pulse Compressor for Laser Amplifier SystemsYang, Chang 01 December 2016 (has links)
Ultra-short and high-peak-power laser pulses have important industrial and scientific applications. While direct laser amplification can lead to peak powers of several million watts, higher values than these cannot be achieved without causing damage to the amplifier material. Chirped pulse amplification technique is thus invented to break this barrier. By temporally stretching pulses before entering amplifier, the pulse peak power is significantly reduced and thus becomes safe to be passed through the amplifier. After amplification, a compressor is used to recover the pulse width, and high-power ultra-short laser pulses are produced. Chirped pulse amplification technology increases the pulse energy by transferring the damaging effects of high-peak power laser pulses from the vulnerable amplifier to a relatively robust compressor system. The compressor is therefore a crucial device for producing high peak powers. However, there are some major drawbacks associated with it. First, compressors in high-energy laser system are usually over 1 cubic meter in size. For many applications, this large and cumbersome size is a limiting factor. Second, compressors are sensitive to outside disturbances; a little misalignment can lead to failure of pulse compression process. Third, gratings with large uniformly ruled area are difficult to fabricate, which impose a limit on achievable peak powers and pulse durations of laser pulses through the use of conventional compressors. In this project, we present a grating-based monolithic optical compressor that offers a way around some of the major problems of existing compressors. By integrating the key optical components, one can make a robust and monolithic compressor that requires no alignment. In the new scheme, folding the optical path with reflective coatings allows one to design a compressor of significantly reduced size by minimizing both the longitudinal and transverse dimensions of the device. The configuration and operation mechanism of this novel compressor are described. A method for calculating the volume of the compressor is investigated. This is validated by computing the size of a specific monolithic compressor. Simulation results obtained through finite-difference time-domain method are presented, proving that the new compressor provides a compact, portable, and robust means for temporally compressing long duration pulses.
|
9 |
Advanced signal processing techniques for multimodal ultrasonic guided wave responseFateri, Sina January 2015 (has links)
Ultrasonic technology is commonly used in the eld of Non-Destructive Testing (NDT) of metal structures such as steel, aluminium, etc. Compared to ultrasonic bulk waves that travel in infinite media with no boundary influence, Ultrasonic Guided Waves (UGWs) require a structural boundary for propagation such that they can be used to inspect and monitor long elements of a structure from a single position. The greatest challenges for any UGW system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this thesis, a technique is developed which facilitates the measurement of Time of Arrival (ToA) and group velocity dispersion curves of wave modes for one dimensional structures as far as wave propagation is concerned. A second technique is also presented which employs the dispersion curves to deliver enhanced range measurements in complex multimodal UGW responses. Ultimately, the aforementioned techniques are used as a part of the analysis of previously unreported signals arising from interactions of UGWs with piezoelectric transducers. The first signal processing technique is presented which used a combination of frequency-sweep measurement, sampling rate conversion and the Fourier transform. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique has the capability to derive the ToA and group velocity dispersion curve of the wave modes of interest. The second signal processing technique uses broad band excitation, dispersion compensation and cross-correlation. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique noticeably improves the Signal to Noise Ratio (SNR) of the UGW response using a priori knowledge of the dispersion curve. It is also able to derive accurate quantitative information about the ToA and the propagation distance. During the development of the aforementioned signal processing techniques, some unwanted wave-packets are identified in the UGW responses which are found to be induced by the coupling of a shear mode piezoelectric transducer at the free edge of the waveguide. Accordingly, the effect of the force on the piezoelectric transducers and the corresponding reflections and mode conversions are studied experimentally. The aforementioned signal processing techniques are also employed as a part of the study. A Finite Element Analysis (FEA) procedure is also presented which can potentially improve the theoretical predictions and converge to results found in experimental routines. The approach enhances the con dence in the FEA models compared to traditional approaches. The outcome of the research conducted in this thesis paves the way to enhance the reliability of UGW inspections by utilizing the signal processing techniques and studying the multimodal responses.
|
10 |
Probing Collective Multi-electron Effects with Few Cycle Laser PulsesShiner, Andrew 15 March 2013 (has links)
High Harmonic Generation (HHG) enables the production of bursts of coherent soft x-rays with attosecond pulse duration. This process arrises from the nonlinear interaction between intense infrared laser pulses and an ionizing gas medium. Soft x-ray photons are used for spectroscopy of inner-shell electron correlation and exchange processes, and the availability of attosecond pulse durations will enable these processes to be resolved on their natural time scales. The maximum or cutoff photon energy in HHG increases with both the intensity as well as the wavelength of the driving laser. It is highly desirable to increase the harmonic cutoff as this will allow for the generation of shorter attosecond pulses, as well as HHG spectroscopy of increasingly energetic electronic transitions.
While the harmonic cutoff increases with laser wavelength, there is a corresponding decrease in harmonic yield. The first part of this thesis describes the experimental measurement of the wavelength scaling of HHG efficiency, which we report as lambda^(-6.3) in xenon, and lambda^(-6.5) in krypton.
To increase the HHG cutoff, we have developed a 1.8 um source, with stable carrier envelope phase and a pulse duration of <2 optical cycles. The 1.8 um wavelength allowed for a significant increase in the harmonic cutoff compared to equivalent 800 nm sources, while still maintaing reasonable harmonic yield. By focusing this source into neon we have produced 400 eV harmonics that extend into the x-ray water window.
In addition to providing a source of photons for a secondary target, the HHG spectrum caries the signature of the electronic structure of the generating medium. In krypton we observed a Cooper minimum at 85 eV, showing that photoionization cross sections can be measured with HHG. Measurements in xenon lead to the first clear observation of electron correlation effects during HHG, which manifest as a broad peak in the HHG spectrum centred at 100 eV.
This thesis also describes several improvements to the HHG experiment including the development of an ionization detector for measuring laser intensity, as well as an investigation into the role of laser mode quality on HHG phase matching and efficiency.
|
Page generated in 0.0806 seconds