• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 21
  • 20
  • 19
  • 15
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design and Implementation of IGBT Based Power Supply for Food Treatment

Moonesan, Mohammad Saleh January 2011 (has links)
Pulsed electric field (PEF) processing has been demonstrated to be an effective non-thermal pasteurization method for food-treatment applications. With this method, high voltage, short-duration pulses are applied to a chamber through which liquid food is passed. If the voltage applied and the corresponding electric field develops a potential higher than a critical trans-membrane potential, the pores expand, and the membrane of the living cell is ruptured. Due to the lower amount of energy consumed during a PEF process, the temperature of the liquid is kept much lower than as opposed to conventional pasteurization. The PEF method thus kills bacteria and other microorganisms while preserving the nutrition and taste of the liquid foods. Although the parameter responsible for inactivation is the voltage applied, for any given voltage, the conductivity of the liquid defines a current through the liquid that causes the temperature to rise. Therefore, preventing excessive heating of the liquid requires the application of an efficient waveform. According to the literature, the most efficient waveform is a square wave since the entire energy applied would be used for the inactivation process. Although some power supplies are capable of generating such a waveform, the generation of an efficient waveform that satisfies all the requirements for producing a viable product for PEF applications is still a challenging problem. In this research, a cascadable pulse generator, based on a Marx generator design, was designed and implemented in order to generate a pulsed waveform for the treatment of liquid food. IGBT switches were used to charge capacitors in parallel and to discharge them in series as a means of generating a high voltage at the output. The design was implemented and tested for two stages, generating up to 6 kV and 1.6 kA square pulses with a controllable pulse width from 1 µs to 10 µs. Up to 3 switches were connected in parallel to enhance the current capability of the system. Also investigated are ways to improve the transient time by enhancing the IGBT driver circuit. The effect of design parameters such as pulse width, voltage, and current on the temperature rise in the liquid was also studied. A variety of liquid foods with different conductivities were tested in order to confirm the functionality of the system.
32

MegaGauss : a portable 40T magnetic field generator

Wisher, Matthew Louis 11 July 2011 (has links)
Fusion neutrons from high energy density plasmas generated by pulsed laser irradiation of nanoscale atomic clusters have been explored in recent experiments at the University of Texas at Austin. A sufficiently strong (~200 T) magnetic field is expected to produce a magnetized, high temperature (10 keV) plasma with beta [approximately equal to] 1. Such a field along the laser axis may confine the plasma’s radial expansion, thus increasing fusion yield. As part of a multi-stage project to implement this experiment, a scaled (~40 T, ~500 KA) version of the final 200 T, 2.2 MA pulsed power device has been designed and built by Sandia National Laboratories and is now at UT-Austin. This apparatus, named MegaGauss, is meant to serve as a preparation tool for the 200 T system; as such, its current pulse was recorded for analysis, and is compared to a theoretical model to verify its response parameters (e.g. peak current, time to peak). Techniques and results of this comparison are discussed, followed by explanations of basic construction of the 40 T device and current sensing instrumentation. Discussion of MegaGauss is completed with a survey of notable failure modes, and a description of the often severe effects the miniature field-generating Helmholtz coil experiences due to the current pulse and magnetic field. Finally, a novel data archive scheme, structured around the familiar MDSplus archive system, is implemented in Labview and integrated into the main pulsed power control program. Specifically, methods for linking MDSplus’s robust functionality with Labview’s intuitive development environment are realized by means of a specialized software bridge between the two. These methods are used in software that allows MDSplus archives to be written and read exclusively through Labview. / text
33

A Series-parallel Resonant Converter for Electrochemical Wastewater Treatment

Klement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.
34

A Series-parallel Resonant Converter for Electrochemical Wastewater Treatment

Klement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.
35

Design and Implementation of IGBT Based Power Supply for Food Treatment

Moonesan, Mohammad Saleh January 2011 (has links)
Pulsed electric field (PEF) processing has been demonstrated to be an effective non-thermal pasteurization method for food-treatment applications. With this method, high voltage, short-duration pulses are applied to a chamber through which liquid food is passed. If the voltage applied and the corresponding electric field develops a potential higher than a critical trans-membrane potential, the pores expand, and the membrane of the living cell is ruptured. Due to the lower amount of energy consumed during a PEF process, the temperature of the liquid is kept much lower than as opposed to conventional pasteurization. The PEF method thus kills bacteria and other microorganisms while preserving the nutrition and taste of the liquid foods. Although the parameter responsible for inactivation is the voltage applied, for any given voltage, the conductivity of the liquid defines a current through the liquid that causes the temperature to rise. Therefore, preventing excessive heating of the liquid requires the application of an efficient waveform. According to the literature, the most efficient waveform is a square wave since the entire energy applied would be used for the inactivation process. Although some power supplies are capable of generating such a waveform, the generation of an efficient waveform that satisfies all the requirements for producing a viable product for PEF applications is still a challenging problem. In this research, a cascadable pulse generator, based on a Marx generator design, was designed and implemented in order to generate a pulsed waveform for the treatment of liquid food. IGBT switches were used to charge capacitors in parallel and to discharge them in series as a means of generating a high voltage at the output. The design was implemented and tested for two stages, generating up to 6 kV and 1.6 kA square pulses with a controllable pulse width from 1 µs to 10 µs. Up to 3 switches were connected in parallel to enhance the current capability of the system. Also investigated are ways to improve the transient time by enhancing the IGBT driver circuit. The effect of design parameters such as pulse width, voltage, and current on the temperature rise in the liquid was also studied. A variety of liquid foods with different conductivities were tested in order to confirm the functionality of the system.
36

A novel electric fence energizer : design and analysis

Thrimawithana, Duleepa J January 2008 (has links)
Continual advancements in technology have led to the development of reliable, efficient and economical farm management systems, many of which utilize electric fences for effective control of farm animals. An electric fence system constitutes a conducting fence structure that is energized by a high voltage signal generated from an electric fence energizer. Modern electric fence energizers employ a pulsed power supply together with an appropriate high voltage charging scheme to generate high voltage pulses that energize the fence structure. The high voltage pulse delivers a non-lethal electric shock to an animal that comes into contact with the fence, and the consequent psychological impact on the animal is such that it is less likely to come into contact with the fence again. The complexity associated with modelling electric fence systems has hindered the development of proper mathematical tools that aid their design and optimization, and as a consequence, electric fence systems are currently designed using empirical rules together with a trial and error design approach. This Thesis therefore aims to fulfil this need by presenting new technologies and mathematical tools that can be used to design both intelligent and optimized electric fence systems. It presents a comprehensive study on electric fencing systems, which includes a detailed mathematical analysis on pulse propagation properties of electric fence networks and the development of high performance fence energizers that incorporates new pulses power supply technologies and high voltage charging schemes. With regard to the pulsed power technologies, two novel topologies with the ability to adapt their output pulse shape according to the fence conditions are proposed. The performance of these technologies is analyzed mathematically, and verified experimentally. In comparison to the existing fence energizer technology, energizers that are based on the proposed pulsed power supply designs are superior in performance. Furthermore, a novel Buck-Boost pushpull parallel-resonant converter technique, which is suitable for charging high voltage storage capacitors in an energizer, is also presented. The proposed technique allows for the push-pull parallel-resonant converter to operate with a frequency dependent variable voltage gain over a wide load range while maintaining zero voltage switching (ZVS). The operation of the converter is analyzed mathematically and verified experimentally to validate the proposed technique. In order to gain an insight into the propagation characteristics of electric fence networks, the Thesis presents a comprehensive mathematical model. The model uses the propagation properties of fence networks with frequency dependent distributed line parameters to obtain analytical solutions for the propagation function in the frequency-domain. As these analytical solutions are complex in nature, they are solved numerically to obtain time-domain solutions, the accuracy of which are verified through experiments and simulations. The mathematical tools and new technologies proposed in the thesis can be used to design electric fence systems that are more efficient and effective than the existing systems. In addition, the tools proposed are also expected to aid the design of electric fence based communication channels for intelligent farm management systems.
37

Flashover prevention on polystyrene high voltage insulators in a vacuum

Benwell, Andrew L., January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 18, 2008) Includes bibliographical references.
38

Runtime and jitter of a laser triggered gas switch

Hutsel, Brian T. Kovaleski, Scott D. January 2008 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on September 24, 2009). Thesis advisor: Dr. Scott Kovaleski. Includes bibliographical references.
39

Electromagnetic Railgun Launchers: Practical and Theoretical Perspectives

Sung, Victor W. 25 October 2022 (has links)
Doctor of Philosophy / Railguns are highly complex multi-disciplinary engineering systems that use electricity to launch projectiles at very high speeds. This dissertation investigates new technologies, models, and theories necessary for the development of practical systems to bring the railgun out of the lab and into the field. The research focuses on improvements to the size, weight, performance, and efficiency of components of the railgun's power supply as well as improvements to its control. Extensive theories useful for the design and modeling of the system were developed with emphasis on scaling, efficiency, and physics. These technologies were experimentally demonstrated on a reduced scale railgun system.
40

A High Power Density Three-level Parallel Resonant Converter for Capacitor Charging

Sheng, Honggang 28 May 2009 (has links)
This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the merits of the three-level structure and resonant converters, are an attractive topology for these applications. The three-level configuration allows for the use of lower-voltage-rating and faster devices, while the resonant converter reduces switching loss and enhances switching capability. This dissertation begins with an analysis of the influence of variations in the structure of the resonant tank on the transformer volume, with the aim of achieving a high power density three-level DC-DC converter. As one of the most bulky and expensive components in the power converter, the different positions of the transformer within the resonant tank cause significant differences in the transformer's volume and the voltage and current stress on the resonant elements. While it does not change the resonant converter design or performance, the improper selection of the resonant tank structure in regard to the transformer will offset the benefits gained by increasing the switching frequency, sometimes even making the power density even worse than the power density when using a low switching frequency. A methodology based on different structural variations is proposed for a high-density design, as well as an optimized charging profile for transformer volume reduction. The optimal charging profile cannot be perfectly achieved by a traditional output-voltage based variable switching frequency control, which either needs excess margin to guarantee ZVS, or delivers maximum power with the danger of losing ZVS. Moreover, it cannot work for widely varied input voltages. The PLL is introduced to overcome these issues. With PLL charging control, the power can be improved by 10% with a narrow frequency range. The three-level structure in particular suffers unbalanced voltage stress in some abnormal conditions, and a fault could easily destroy the system due to minimized margin. Based on thoroughly analysis on the three-level behaviors for unbalanced voltage stress phenomena and fault conditions, a novel protection scheme based on monitoring the flying capacitor voltage is proposed for the three-level structure, as well as solutions to some abnormal conditions for unbalanced voltage stresses. A protection circuit is designed to achieve the protection scheme. A final prototype, built with a custom-packed MOSFET module, a SiC Schottky diode, a nanocrystalline core transformer with an integrated resonant inductor, and a custom-designed oil-cooled mica capacitor, achieves a breakthrough power density of 140W/in3 far beyond the highest-end power density reported (<100 W/in3) in power converter applications. / Ph. D.

Page generated in 0.0313 seconds