• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Plasmas for High-Speed Flow Control and Combustion Control

Keshav, Saurabh 01 October 2008 (has links)
No description available.
2

Vers une gravure plasma de précision nanométrique : simulations de dynamique moléculaire en chimie Si-Cl / Towards a nanometric precision etching in reactive plasmas : molecular dynamics simulations of Si-Cl interactions

Brichon, Paulin 10 March 2015 (has links)
Ce travail de thèse aborde le problème de la gravure de matériaux ultraminces pour la réalisation de nouvelles générations de transistors (FDSOI, FinFET) dans les dispositifs nanoélectroniques avancés. Ces transistors doivent être gravés avec une précision nanométrique pour ne pas endommager les propriétés électroniques des couches actives. Afin d'atteindre une telle précision, les dommages surfaciques et l'épaisseur des couches réactives formées lors de l'exposition plasma doivent être maintenus en-deçà du nanomètre, véritable défi auquel les plasmas ICP continus ne sont plus à même de répondre. Pour assister le développement de nouveaux procédés de gravure, des simulations de dynamique moléculaire ont été développées afin étudier l'influence de nouvelles technologies plasma (plasmas pulsés, plasma basse Te, gaz pulsés) sur les interactions entre silicium et plasmas chlorés. Les simulations montrent que l'énergie ionique (Eion) est le paramètre numéro un pour contrôler la gravure de couches de Si ultraminces, une diminution de l'énergie réduisant à la fois l'épaisseur de couche endommagée SiClx et le taux de gravure. Le rapport du flux de neutres sur flux d'ions (Γ) est le 2nd paramètre clé : son augmentation entraîne une diminution sensible l'épaisseur de couche perturbée tout en augmentant le taux de gravure. Quantitativement, cette étude montre que des plasmas caractérisés par de faibles énergies ioniques (< 15 eV) ou des rapports Γ importants (⩾ 1000) permettre d'obtenir des couches réactives d'épaisseur sub-nanométrique (cf. plasmas basse Te ou synchronisés pulsés). En mode "bias pulsé", les simulations montrent que pour une valeur Vbias donnée, pulser le bias permet de diminuer à la fois l'épaisseur de couche réactive et le taux de gravure. Cet effet est d'autant plus marqué que le rapport de cycle DC est faible, ce qui élargit la fenêtre des paramètres opératoires. Pour contrôler la gravure, une autre solution pourrait consister à contrôler l'épaisseur des couches réactives de manière dynamique. Inspiré de l'ALE (Atomic Layer Etching), ce nouveau concept consiste à pulser rapidement et alternativement différents gaz pour décomposer le procédé de gravure en cycles répétitifs de deux étapes plasma distinctes. La 1ère étape vise à limiter la formation de la couche mixte à 1nm d'épaisseur dans un plasma réactif (Cl2) en optimisant le temps d'injection du gaz; la 2nde étape vise à graver la couche ainsi formée dans un plasma de gaz rare (Ar, Xe) sans endommager le matériau sous-jacent. Nos simulations confirment la faisabilité et la répétabilité d'un tel concept. / This thesis focuses on technological challenges associated with the etching of ultrathin materials used for new generations of transistors (FDSOI, FinFET) in advanced nanoelectronics devices. These transistors must be etched with a nanometric precision in order to preserve the electronic properties of active layers. To reach such a precision, plasma-induced damage and reactive layers thicknesses formed during the etch must remain below 1nm, a challenge which cannot be addressed by continuous-waves ICP plasmas. To assist the development of new etching processes, molecular dynamics simulations have been developed to study the influence of new plasma technologies (pulsed plasmas, low-Te plasmas, gaz pulsing) on interactions between silicon and chlorine plasmas. Simulations show that the key parameter to control the etching of ultrathin Si layers is the ion energy (Eion), which lowers both the SiClx damaged layer thickness and the etch rate when it is decreased. The neutral-to-ion flux ratio (Γ) is the second key parameter: its increase strongly reduces the reactive layer thickness while the etch rate grows. Quantitatively, this study shows that plasmas with low ion energies (< 15 eV) and high Γ ratios (⩾ 1000) allow to obtain sub-nanometer thick reactive layers (cf. low-Te or synchronized pulsed plasmas). In « pulsed bias » mode, simulations show that for a given Vbias value, pulsing the bias decreases both the reactive layer thickness and the etch rate. This effect is stronger at low duty cycle DC, which can improve the control of the etching process. To control the etching of ultrathin films, another solution may be to control dynamically the reactive layers formation. Inspired from ALE (Atomic Layer Etching) principle, this new concept consists in pulsing quickly and alternatively several gases to divide the etching process into repetitive cycles of two distinct plasma steps. The first step aims to limit the mixed layer formation at 1nm in a reactive (Cl2) plasma by optimizing the gas injection time; the 2nd step aims to remove the so-formed layer in a noble gas plasma (Ar, Xe) without damaging the material below. Our simulations confirm the feasibility and the repeatability of such a concept.
3

Vers une gravure plasma de précision nanométrique : simulations de dynamique moléculaire en chimie Si-Cl / Towards a nanometric precision etching in reactive plasmas : molecular dynamics simulations of Si-Cl interactions

Brichon, Paulin 10 March 2015 (has links)
Ce travail de thèse aborde le problème de la gravure de matériaux ultraminces pour la réalisation de nouvelles générations de transistors (FDSOI, FinFET) dans les dispositifs nanoélectroniques avancés. Ces transistors doivent être gravés avec une précision nanométrique pour ne pas endommager les propriétés électroniques des couches actives. Afin d'atteindre une telle précision, les dommages surfaciques et l'épaisseur des couches réactives formées lors de l'exposition plasma doivent être maintenus en-deçà du nanomètre, véritable défi auquel les plasmas ICP continus ne sont plus à même de répondre. Pour assister le développement de nouveaux procédés de gravure, des simulations de dynamique moléculaire ont été développées afin étudier l'influence de nouvelles technologies plasma (plasmas pulsés, plasma basse Te, gaz pulsés) sur les interactions entre silicium et plasmas chlorés. Les simulations montrent que l'énergie ionique (Eion) est le paramètre numéro un pour contrôler la gravure de couches de Si ultraminces, une diminution de l'énergie réduisant à la fois l'épaisseur de couche endommagée SiClx et le taux de gravure. Le rapport du flux de neutres sur flux d'ions (Γ) est le 2nd paramètre clé : son augmentation entraîne une diminution sensible l'épaisseur de couche perturbée tout en augmentant le taux de gravure. Quantitativement, cette étude montre que des plasmas caractérisés par de faibles énergies ioniques (< 15 eV) ou des rapports Γ importants (⩾ 1000) permettre d'obtenir des couches réactives d'épaisseur sub-nanométrique (cf. plasmas basse Te ou synchronisés pulsés). En mode "bias pulsé", les simulations montrent que pour une valeur Vbias donnée, pulser le bias permet de diminuer à la fois l'épaisseur de couche réactive et le taux de gravure. Cet effet est d'autant plus marqué que le rapport de cycle DC est faible, ce qui élargit la fenêtre des paramètres opératoires. Pour contrôler la gravure, une autre solution pourrait consister à contrôler l'épaisseur des couches réactives de manière dynamique. Inspiré de l'ALE (Atomic Layer Etching), ce nouveau concept consiste à pulser rapidement et alternativement différents gaz pour décomposer le procédé de gravure en cycles répétitifs de deux étapes plasma distinctes. La 1ère étape vise à limiter la formation de la couche mixte à 1nm d'épaisseur dans un plasma réactif (Cl2) en optimisant le temps d'injection du gaz; la 2nde étape vise à graver la couche ainsi formée dans un plasma de gaz rare (Ar, Xe) sans endommager le matériau sous-jacent. Nos simulations confirment la faisabilité et la répétabilité d'un tel concept. / This thesis focuses on technological challenges associated with the etching of ultrathin materials used for new generations of transistors (FDSOI, FinFET) in advanced nanoelectronics devices. These transistors must be etched with a nanometric precision in order to preserve the electronic properties of active layers. To reach such a precision, plasma-induced damage and reactive layers thicknesses formed during the etch must remain below 1nm, a challenge which cannot be addressed by continuous-waves ICP plasmas. To assist the development of new etching processes, molecular dynamics simulations have been developed to study the influence of new plasma technologies (pulsed plasmas, low-Te plasmas, gaz pulsing) on interactions between silicon and chlorine plasmas. Simulations show that the key parameter to control the etching of ultrathin Si layers is the ion energy (Eion), which lowers both the SiClx damaged layer thickness and the etch rate when it is decreased. The neutral-to-ion flux ratio (Γ) is the second key parameter: its increase strongly reduces the reactive layer thickness while the etch rate grows. Quantitatively, this study shows that plasmas with low ion energies (< 15 eV) and high Γ ratios (⩾ 1000) allow to obtain sub-nanometer thick reactive layers (cf. low-Te or synchronized pulsed plasmas). In « pulsed bias » mode, simulations show that for a given Vbias value, pulsing the bias decreases both the reactive layer thickness and the etch rate. This effect is stronger at low duty cycle DC, which can improve the control of the etching process. To control the etching of ultrathin films, another solution may be to control dynamically the reactive layers formation. Inspired from ALE (Atomic Layer Etching) principle, this new concept consists in pulsing quickly and alternatively several gases to divide the etching process into repetitive cycles of two distinct plasma steps. The first step aims to limit the mixed layer formation at 1nm in a reactive (Cl2) plasma by optimizing the gas injection time; the 2nd step aims to remove the so-formed layer in a noble gas plasma (Ar, Xe) without damaging the material below. Our simulations confirm the feasibility and the repeatability of such a concept.
4

Ultrafast Emission Spectroscopy and Nonlinear Laser Diagnostics for Nanosecond Pulsed Plasmas

Karna S Patel (9380432) 24 April 2024 (has links)
<p dir="ltr">In recent years, nanosecond repetitively pulsed (NRP) plasma discharges have garnered significant interest due to their rapid generation of reactive excited-state species, reactive radicals, and localized heat release within nanosecond (ns) timescale. To effectively harness these plasmas for altering system-level thermal and chemical behavior, a thorough understanding of their governing physics is crucial. This knowledge enables the development of predictive plasma kinetic models for tailoring NRP plasmas to specific applications. However, achieving this requires high-fidelity experimental data to validate models and deepen our understanding of fundamental plasma physics. Advancing experimental spectroscopy and laser diagnostics methods is essential for probing such temporally highly dynamic and optically complex nonequilibrium environments. This includes developing novel <i>test platforms</i>, conducting <i>fundamental research</i> to address existing knowledge gaps, and constructing custom <i>ultrafast laser architectures</i> for probing plasma properties. </p><p dir="ltr">The pioneering development of Streak-based <i>test platform</i> in the diagnostics field of nanosecond pulsed plasmas and its successful application towards inferring the underlying ultrafast spatio-temporal evolution of nanosecond pulsed plasma discharges with an unprecedented time-resolution as short as ~25 ps is presented for the first time. Spectrally filtered, 1D line-imaging of nanosecond pulsed plasma discharges in a single-shot, jitter-free, continuously sweeping manner is obtained, and differences in discharge dynamics of air and N2 plasma environments are studied. Successive <i>test platform</i> advancement includes spectrally resolved Streak-spectroscopy measurements of thermal regime-transition evolution from early-nonequilibrium to local-thermal-equilibrium (LTE) to attain time-resolved quantitative insights into N2(C) state rotational/vibrational nonequilibrium temperatures, electron temperature/density, and spectral lifetime dynamics. </p><p dir="ltr">Ultrafast laser-based progression includes detailed <i>fundamental</i> investigation of higher-order optical nonlinearity perturbations of fs-EFISH by considering of – self-phase modulation induced spectral characteristic of fs-EFISH signal, calibration mapping during-below-and-beyond optical breakdown regime, optical Kerr effect consequences, impact of femtosecond (fs) laser seeding on the noninvasiveness of fs-EFISH, and spectral emission characteristics of fs laser filaments. To infer N2(X) state nonequilibrium of NRP pulsed plasmas, two hybrid fs/ps ro-vibrational coherent anti-Stokes Raman scattering (CARS) <i>ultrafast laser architectures</i> are developed. First architecture, single-laser-solution, reduces system’s energy budget by ~3 mJ/pulse for generating narrowband (~21 ps), high-energy (~420 μJ/pulse), 532 nm probe pulses through incorporation of custom built visible fs optical parametric amplifier (OPA) coupled with an Nd:YAG power amplifier module. The second architecture, two-laser-solution, improves system’s robustness through the development of a 1 kHz, 532 nm, high-energy (~600 μJ/pulse), low-jitter (<1 ps), narrowband (~27 ps), master-oscillator-power-amplification (MOPA) based picosecond probe pulse laser time-synchronized with fs master-oscillator. Single-shot, hybrid fs/ps narrowband ro-vibrational CARS demonstration in a combusting flame up to temperatures of ~2400 K is demonstrated. Experimental ro-vibrational CARS investigation includes polarization based nonresonant background suppression and demonstration of preferential Raman coherence excitation shift, a temperature sensitivity enhancing strategy for vibrationally hot mediums like nanosecond pulsed plasmas. Lastly, an ultrafast pulse-friendly optically accessible vacuum cell is designed and fabricated for controlled experiments of NRP fs/ps CARS. Special care is taken to prevent self-focusing and spectral-temporal chirp of fs CARS beams while maintaining Gaussian focusing beam caustic.</p>

Page generated in 0.0479 seconds