• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast relaxation of hot phonons in graphene-hBN heterostructures

Golla, Dheeraj, Brasington, Alexandra, LeRoy, Brian J., Sandhu, Arvinder 01 May 2017 (has links)
Fast carrier cooling is important for high power graphene based devices. Strongly coupled optical phonons play a major role in the relaxation of photo-excited carriers in graphene. Heterostructures of graphene and hexagonal boron nitride (hBN) have shown exceptional mobility and high saturation current, which makes them ideal for applications, but the effect of the hBN substrate on carrier cooling mechanisms is not understood. We track the cooling of hot photo-excited carriers in graphene-hBN heterostructures using ultrafast pump-probe spectroscopy. We find that the carriers cool down four times faster in the case of graphene on hBN than on a silicon oxide substrate thus overcoming the hot phonon bottleneck that plagues cooling in graphene devices. (C) 2017 Author(s).
2

Acoustique picoseconde dans une cellule biologique individuelle / Picosecond ultrasonics in a single biological cell

Ducousso, Mathieu 22 October 2010 (has links)
L’acoustique picoseconde est une technique qui permet de générer et de détecter des ondes acoustiques de longueur d’onde submicrométrique par l’utilisation d’impulsions lumineuses ultrarapides (100 fs). Si la technique commence à être appliquée industriellement pour le contrôle non-destructif de films solides micrométriques, comme les microprocesseurs, très peu d’études concernent son application aux milieux liquides ou mous, malgré son potentiel unique pour les mesures acoustiques très hautes fréquences (supérieur à la dizaine de GHz). Ce travail de thèse dresse un premier panorama d’applications possibles de la technique d’acoustique picoseconde pour l’étude d’une cellule biologique unique, dont l’épaisseur peut être d’une centaine de nanomètres à quelques micromètres. Les résolutions atteintes permettent des applications pour l’imagerie et la tomographie acoustique d’une cellule unique par la détermination locale de ses propriétés physiques. Un modèle de simulation analytique est développé pour aider à la compréhension des signaux détectés et pour la résolution du problème inverse. La génération acoustique est simulée en résolvant les équations couplées de diffusion de la chaleur et de la propagation acoustique. La détection optique est ensuite étudiée en résolvant l’équation de Maxwell où les phénomènes thermiques et acoustiques perturbent l’indice optique du matériau. Pour les besoins expérimentaux, une enceinte biologique, étanche et thermostatée, est conçue. De même, le montage laser est adapté pour permettre une détection bicolore de l’onde acoustique se propageant dans la cellule. Enfin, un microscope combinant la visualisation des cellules par épifluorescence au dispositif laser expérimental est développé. Ce dernier permet de localiser précisément les éléments subcellulaires de la cellule, pour ensuite les étudier par acoustique picoseconde. La démonstration du potentiel de la méthode pour l’imagerie cellulaire et l’évaluation de sa sensibilité est faite sur cellule végétale. Ensuite, une mesure quantitative des propriétés viscoélastiques de cellules ostéoblastes (MC3T3-E1), adhérentes sur un matériau mimant une prothèse de titane, est réalisée. Puis, l’effet du peptide RGD et de la protéine BMP-2 sur les propriétés viscoélastiques de la cellule ostéoblaste est quantifié. Ce travail est réalisé en partenariat avec une équipe de recherche en bio-ingénierie et reconstruction tissulaire, l’U577. / The picosecond ultrasonics technique is well suited to generate and to probe acoustic waves of submicromic wavelength using ultrafast light pulses (100 fs). If the technique starts to be used for non-destructive testing in industry, for micrometric solid films (microprocessor) for example, very few applications concern liquids or soft media, despite its unique potential for acoustic measurements at very high acoustic frequencies (up to ten GHz). This PhD study gives a first comprehensive overview of the applications of the picosecond ultrasonics technique for the study of a single biological cell, the thickness of which can be from around 100 nm to a few µm. Measurement accuracy is high enough for imaging a single cell and for evaluating its local physical properties. To understand the detected data, an analytical model is developed. This model is used too for the inverse model resolution. The acoustic generation is simulated solving the coupled equations of heat diffusion and of acoustic wave propagation. Optical detection is then studied solving the Maxwell equations where both thermal and acoustic phenomena perturb optical index of the media. For experiments, a biocompatible sample holder, leakproof and thermocontrolled, is built. In the same way, the optical experimental setup is adapted to allow a two color probing of the ultrafast photo-acoustic response in a single cell. Finally, a microscope combining cell fluorescence visualisation and the picosecond ultrasonic laser setup is developed. It allows to localize precisely the cell sub-components and to probe them by the picosecond ultrasonics technique. The demonstration of the technique for the single cell imaging and the evaluation of its accuracy is performed on vegetal cells. Then, a quantitative measurement of the viscoelastic properties of single osteoblast cells (MC3T3-E1), adhering on a bone substitute material (Ti6Al4V), is performed. RGD peptide and BMP-2 proteins effects on the cell osteoblast viscoelastic properties are quantified. This work is performed with a tissue or bone substitute engineering research team.
3

Spectroscopie EUV résolue temporellement à l'échelle femtoseconde par imagerie de vecteur vitesse et génération d'harmoniques d'ordres élevés

Handschin, Charles 01 July 2013 (has links)
Cette thèse fait l'étude expérimentale de dynamiques de relaxations ultrarapides au sein d'atomes et de molécules (Ar, NO2, C2H2). Les méthodes expérimentales qui sont utilisées sont basées sur l'interaction d'un rayonnement laser avec le système atomique ou moléculaire étudié et font intervenir le processus de génération d'harmoniques d'ordres élevés, ainsi que la spectrométrie d'imagerie de vecteur vitesse. Au cours de cette thèse, deux approchesexpérimentales de type pompe-sonde ont été mises en œuvre. Une première approche exploitela sensibilité du processus de génération d'harmoniques à la structure électronique dumilieu pour la sonder. Cette méthode a été utilisée sur la molécule de dioxyde d'azote pourobserver sa relaxation électronique à travers l'intersection conique des états X2A1-A2B2suite à une excitation autour de 400 nm. Une seconde approche utilise le rayonnementharmonique comme source de photons dans le domaine de l'extrême ultraviolet (EUV)pour exciter ou sonder les espèces d'intérêt. Cette approche a été couplée avec l'utilisationd'un spectromètre d'imagerie de vecteur vitesse (VMIS), qui a été développé durant lathèse. Des expériences menées sur un système modèle comme l'argon ont permis de validerle dispositif expérimental, qui a ensuite été mis en application pour étudier la photodissociationde la molécule d'acétylène, après excitation autour de 9,3 eV du complexe deRydberg 3d-4s. Les deux méthodes mises en œuvre permettent toutes-deux de réaliserdes études dynamiques résolues en temps à l'échelle femtoseconde. / Ultrafast atomic and molecular dynamics (Ar, NO2, C2H2) have been experimentally studied during this PhD. The employed techniques use the laser interaction with the atomic or molecular system produced in gas phase. High harmonic generation (HHG) pump-probe studies allow resolving dynamics on a femtosecond scale. Two applications of high harmonic generation have been implemented here. In the first one, the harmonic generation process is the probe of a vibronic relaxation induced by a pump pulse. This application is currently labeled high harmonic spectroscopy. The sensibility of the high harmonic process to the geometry of the atomic or molecular orbitals is exploited to obtain information about the electronic structure of the generating medium. This method have been used to reveal the electronic relaxation of the nitrogen dioxide molecule (NO2) through the X2A1-A2B2 conical intersection.A second way consists to use the harmonic radiation like a source of XUV photons. The produced XUV radiation permits thus to reach electronically excited energy levels of atoms or molecules, pumping only with a one photon transition. XUV photons can also be used like a probe to ionize products of a molecular reaction. Velocity map imaging spectrometer (VMIS) have been designed and built to complete this fs-VUV source. Above threshold ionization (ATI) experiments and pump-probe XUV-400 nm studies have been performed on reference system like Argon to characterize the built experimental setup. The last excitation scheme has been also applied to study the photodissociation of the Acetylene excited in the 3d-4s Rydberg complex.

Page generated in 0.1312 seconds