• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic and molecular analysis of lesions in the headcase locus of Drosophila melanogaster

Gunn, David January 1997 (has links)
No description available.
2

Biologia de Califor?deos (Diptera): fotoresposta, parasitismo e controle / Calliphorids Biology (Diptera): photoresponse, parasitism and biological control

MELLO, Renata da Silva 20 March 2012 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-07-11T18:28:41Z No. of bitstreams: 1 2012 - Renata da Silva Mello.pdf: 1215608 bytes, checksum: 4aa180e59be574ab4757238ec8087e62 (MD5) / Made available in DSpace on 2017-07-11T18:28:41Z (GMT). No. of bitstreams: 1 2012 - Renata da Silva Mello.pdf: 1215608 bytes, checksum: 4aa180e59be574ab4757238ec8087e62 (MD5) Previous issue date: 2012-03-20 / CAPES / Calliphorids are insects of medical-sanitary i and forensic entomology, contributing mainly to estimate the minimum post mortem interval. Therefore, studies on population dynamics under different abiotic conditions, as well as investigations on diperan control are very important. This study was divided into four chapters that approached the subject from different perspectives. The first two chapters are related to post-embryonic development of Chrysomya megacephala and Chrysomya albiceps submitted to different photoperiods (L0:D24, L12:D12, L16:D8, L24:D0). These species responded differently, however both species had a faster development for the different stages and their viabilities were higher in the 24h scotophase ( 24 hours of darkness) when compared to the other photoperiods. There was a trend for deceleration of the development as the photophase increased and it was evident for the larval stage of the both species. However, in C. albiceps was more pronouced for newly- larvae hatched to adult period, presenting a difference of up to four days between the shorter photophase (L0:D24) and the longer photophase (L24:D0). The total period of development of C. megacephala was shorter when the 24hscotophase was compared to the others. Therefore, it was possible to infer that the different photoperiods presented a circadian rhythm of emergence with distinct daily emergence rate, suggesting that this phenomenon was primarily regulated by an endogenous circadian clock, even if they presented modulations by photophases. In the third chapter, the aim was to investigate the biological aspects of Nasonia vitripennis (Pteromalidae) when the female explored hosts buried at different depths ranging from 0.0 to 5.0 cm at 0.5 cm intervals, for two periods of exposition: 24 and 48h. It was observed that two factors, period of exposition and pupation depths, caused differences in the parasitoid progeny and had a relation of dependence. For the group exposed for 48h, the pupae were parasitized only when buried up to 2.0 cm depth, however, for the group exposed for 72h, the parasitic capacity of parasitoids reached pupae buried up to 3.0 cm deep. The group exposed for 48h had a decreasing number of female emerged per pupae as the depth increased. This trend was not observed for the group exposed for 72h. The number of male emerged per pupae did not differ among the depths and periods of expositions. The sex deviation was higher for female for both exposure periods and for all depths. In the fourth chapter was the effect of a cornoside extracte from Parahancornia amapa (Apocynaceae) on post-embryonic development of Chrysomya putoria and progeny of N. vitripennis was investigated. The larval weigh and post-embryonic developmental period of C. putoria were not affected, with exception for the pupal development that was slower with the treatment with 5% cornosideo when compared to the control (distilled water). The newly-hatched larvae to adult period presented a viability of around 60 % for boths treatments. In relation to to the effect of the cornosideo on progeny of the parasitoids the following parameters were analysed: number of parasitoids emerged per pupae, sex ratio and developmental period. None of these were affected in comparison to the control group. The lack of effect of 5% cornoside on calliphorid flies may be a negative aspect when control is being concerned. However the lack of effect on the parasitoid, used as natural controllers of calliphoridas, is a / Califor?deos apresentam import?ncia m?dica-sanit?ria e tamb?m na entomologia forense, pois auxiliam a data??o do intervalo p?s-morte. Desta forma, estudos relativos ? din?mica populacional em diferentes condi??es abi?ticas, bem como investiga??es sobre m?todos de controle destes d?pteros s?o de suma import?ncia. O presente estudo foi dividido em quatro cap?tulos que abordaram o tema por diferentes perspectivas. Os dois primeiros cap?tulos foram relativos ao desenvolvimento de Chrysomya megacephala e Chrysomya albiceps submetidas a diferentes fotoper?odos (L0:E24, L12:E12, L16:E8, L24:E0). Estas esp?cies responderam distintamente, no entanto ambas as esp?cies submetidas ?s 24h de escotofase tiveram desenvolvimento mais acelerado em suas diferentes fases imaturas e as viabilidades foram maiores em rela??o aos demais fotoper?odos. Houve uma tend?ncia para desacelara??o do desenvolvimento ? medida que a fotofase foi aumentada, isto foi bem evidente para a fase larval em ambas as esp?cies. Embora, em C. albiceps foi mais pronunciado no per?odo de neolarva a adulto, havendo uma diferen?a de at? quatro dias entre a menor (L0:E24) e a maior fotofase (L24:E0). Em C. megacephala houve diferen?a somente quando o grupo submetido ?s 24h de escotofase foi comparado aos demais fotoper?odos, tendo o desenvolvimento mais acelerado. Foi poss?vel inferir que o ritmo de emerg?ncia teve periodicidade circadiana, embora com taxas di?rias de emerg?ncia distintas nos diferentes fotoper?odos. No terceiro cap?tulo objetivou-se investigar aspectos biol?gicos de Nasonia vitripennis (Pteromalidae) quando expostas aos hospedeiros enterrados em diferentes profundidades, variando de 0,0 a 5,0 cm, a cada 0,5 cm, por dois per?odos, 24h e 48h. Observou-se que a explora??o do pup?rio foi influenciada pelos dois fatores, tempo e profundidade, havendo uma rela??o de depend?ncia entre eles. Em 48h de exposi??o foram observados pup?rios parasitados somente at? a profundidade de 2,0 cm, por?m em 72h a capacidade parasit?ria foi at? 3,0 cm. Houve um decr?scimo do n?mero de f?meas emergidas por pupa com o aumento das profundidades em 48h, no entanto esta tend?ncia n?o foi observada em 72h. O n?mero de machos por pupa n?o diferenciou entre as profundidades e nem entre os dois tempos de exposi??o. Houve um desvio da raz?o sexual para f?meas em ambos os tempos de exposi??o e em todas as profundidades. No quarto cap?tulo foi investigada a a??o do cornos?deo, a fra??o metan?lica do l?tex de Parahancornia amapa (Apocynaceae), sobre o desenvolvimento de Chrysomya putoria e sobre a prog?nie de N. vitripennis. Foi observado que o peso larval e o tempo de desenvolvimento p?s-embrion?rio de C. putoria n?o foram alterados, com exce??o do per?odo pupal que foi mais lento no tratamento com cornos?deo a 5% quando comparado ao grupo controle (?gua destilada). A viabilidade de neolarva a adulto foi em torno de 60% para ambos os tratamentos. Quanto ? influ?ncia do cornos?deo sobre a prog?nie dos parasit?ides, o n?mero de parasit?ides, raz?o sexual e tempo de desenvolvimento n?o foram alterados quando comparados ao controle. P?de se dizer que o cornos?deo a 5% n?o exerceu efeito sobre os califor?deos, aspecto negativo para o controle, e nem tampouco em seus controladores naturais, aspecto positivo.
3

Ant Association and Speciation in Lycaenidae (Lepidoptera): Consequences of Novel Adaptations and Pleistocene Climate Changes

Eastwood, Rodney Gordon, N/A January 2006 (has links)
The butterfly family Lycaenidae (including the Riodinidae) contains an estimated 30% of all butterfly species and exhibits a diverse array of life history strategies. The early stages of most lycaenids associate with ants to varying degrees, ranging from casual facultative coexistence through to obligate association where the long-term survival of the butterfly is dependent on the presence of its attendant ants. Attendant ants guard the butterflies against predators and parasites during their vulnerable period of larval growth and pupation. The caterpillars, in return, reward the ants by providing attractive secretions from specialized glands in their cuticle. The prevalence of caterpillar-ant associations in the species rich Lycaenidae is in contrast with other Lepidoptera, where ant association appears only as isolated cases in otherwise non ant-associated lineages. This has led to the proposal that ant association may have influenced lycaenid diversification or even enhanced the rates of speciation in the group. In contrast, facultative ant-associated butterflies exhibit high levels of host plant integrity, so it is reasonable to assume that host plants may have played a significant role in their diversification. Since the influence of ants (or plants) on diversification is independent of geographic speciation modes such as vicariance or peripheral isolates, there is an underlying inference of sympatric speciation. Certain prerequisites thought to be important for sympatric speciation, such as mating on the host plant (or in the presence of the appropriate ant) as well as ant dependent oviposition preferences are characteristic of many obligate myrmecophiles. Not surprisingly, it has been suggested that evidence for sympatric speciation is more likely to be found in the Insecta since this additional mode of diversification could account for the large numbers of insect species. This thesis tested the diversification processes in obligate and facultative ant associated lycaenids using comparative methodologies in hierarchical molecular phylogenetic analyses. First, several hypotheses relating to the influence of ants on diversification in obligately ant associated lycaenid butterflies were tested in a phylogeographic analysis of the Australian endemic Jalmenus evagoras. The phylogeographic analysis revealed that regional isolation of butterfly subpopulations coincident with locally adapted ant taxa could generate a phylogenetic pattern in which related lycaenids would be seen to associate with related or ecologically similar ants. Likewise, ecological shifts in habitat preferences by lycaenids could lead to co-diversification with habitat specialist ants, even though in both cases, the ants may play only an incidental role in the diversification process. A comparative methodology was then applied in a molecular phylogenetic analysis of the genus Jalmenus to test for a signal of diversification consistent with shifts in ant partners, and to infer the processes by which ants could influence speciation. Several other specific hypotheses relating to monophyly and taxonomy were also examined. Comparative analysis of the Jalmenus phylogeny found that attendant ant shifts coincided with high levels of sympatry among sister species. This pattern could be explained by sympatric speciation; however, data suggested it was more likely that ant shifts occurred during butterfly population expansions as a result of vegetation and climate changes in the Pleistocene. Fragmentation of populations associating with novel ants could promote rapid ecological and behavioural changes and this could result in reproductive isolation of conspecifics when in secondary contact. Diversification would then continue in sympatry. In contrast, secondary contact of populations associating with the same ant species would result in homogenisation of the two lycaenid lineages or the extinction of one. A phylogeographic analysis of the facultative myrmecophiles, Theclinesthes albocincta/T. hesperia, was then undertaken to infer the evolutionary processes (such as the effects of host plant shifts) that could result in extant demographics. Species-specific questions of taxonomy, relative population ages and dispersal routes in arid Australia were also addressed. Results from the analysis suggested the two taxa were conspecific and had diversified in the late Pleistocene as a consequence of isolation in refugia in and around the arid areas of mainland Australia. However, as was the case in the J. evagoras population analysis in which attendant ant shifts were not detected, host plant shifts were not detected in the population analysis of T. albocincta/hesperia. Host plant or attendant ant shifts manifest more frequently at the species level, thus it was necessary to test the influence of host plant shifts at this higher level. The comparative methodology was then applied to a molecular phylogenetic analysis of the facultative ant-associated section Theclinesthes (comprising Theclinesthes, Sahulana and Neolucia) to test for modes of diversification consistent with host plant shifts. The relative importance of other influences on diversification was also assessed. Akin to the Jalmenus analysis, the prediction that sister species ranges should broadly overlap when a shift in host plants had taken place was upheld in the comparative analysis. Species in the genera Jalmenus and Theclinesthes were found to have diversified in the Pleistocene so were subject to the same climatic oscillations that influenced patterns of vegetation expansion and contraction across much of Australia. Thus, the similarity and predictability of relationships in the comparative analyses based on biological data suggested that host plant shifts have influenced diversification in facultative myrmecophiles by inhibiting gene flow in secondary contact in similar fashion to that of attendant ant shifts identified in the Jalmenus phylogeny. Interpretation of data in these analyses suggested that allopatric diversification was the most common mode of speciation. Isolation was inferred to be the result of fragmentation following long distance dispersal across wide expanses of marginal habitat, or vicariance following the closing of biogeographical barriers. However, attendant-ant and host-plant shifts clearly played an important role in the diversification process, and in the maintenance of species integrity among lycaenid butterflies. Furthermore, exceptions to the predicted patterns of range overlap and ecological shifts provided clues to additional modes of diversification including shifts in habitat preferences and an unusual temporal shift following changes in specific host plant phenology resulting in allochronic diversification. Inferring modes of diversification using comparative methods based on range overlap and biological traits in a phylogenetic context is not new; however, the interpretation presented in this thesis is in contrast with contemporary methods. It is clear that the patterns of species range overlap and the ecological preferences of sister taxa are intimately related among lycaenid species that diversified during the Pleistocene. As a result, different influences on diversification can be highlighted in phylogenies when applying existing comparative methodologies but without necessarily drawing the same conclusions about modes of diversification. A more inclusive explanation for patterns of range overlap among sister taxa is detailed, a consequence of which is a method for estimating rates of extinction in a phylogeny where comprehensive distributional, biological and taxonomic data are available. These patterns and predictions may be applicable to a range of taxa, especially those that have diversified in the Pleistocene. Plans for future studies are outlined.

Page generated in 0.3797 seconds