Spelling suggestions: "subject:"pyramide DIKW"" "subject:"tyramide DIKW""
1 |
Détection de dysfonctionements et d'actes malveillants basée sur des modèles de qualité de données multi-capteurs / Detection of dysfunctions and malveillant acts based on multi-sensor data quality modelsMerino Laso, Pedro 07 December 2017 (has links)
Les systèmes navals représentent une infrastructure stratégique pour le commerce international et les activités militaires. Ces systèmes sont de plus en plus informatisés afin de réaliser une navigation optimale et sécurisée. Pour atteindre cet objectif, une grande variété de systèmes embarqués génèrent différentes informations sur la navigation et l'état des composants, ce qui permet le contrôle et le monitoring à distance. Du fait de leur importance et de leur informatisation, les systèmes navals sont devenus une cible privilégiée des pirates informatiques. Par ailleurs, la mer est un environnement rude et incertain qui peut produire des dysfonctionnements. En conséquence, la prise de décisions basée sur des fausses informations à cause des anomalies, peut être à l'origine de répercussions potentiellement catastrophiques.Du fait des caractéristiques particulières de ces systèmes, les méthodologies classiques de détection d'anomalies ne peuvent pas être appliquées tel que conçues originalement. Dans cette thèse nous proposons les mesures de qualité comme une potentielle alternative. Une méthodologie adaptée aux systèmes cyber-physiques a été définie pour évaluer la qualité des flux de données générés par les composants de ces systèmes. À partir de ces mesures, une nouvelle approche pour l'analyse de scénarios fonctionnels a été développée. Des niveaux d'acceptation bornent les états de normalité et détectent des mesures aberrantes. Les anomalies examinées par composant permettent de catégoriser les détections et de les associer aux catégories définies par le modèle proposé. L'application des travaux à 13 scénarios créés pour une plate-forme composée par deux cuves et à 11 scénarios pour deux drones aériens a servi à démontrer la pertinence et l'intérêt de ces travaux. / Naval systems represent a strategic infrastructure for international commerce and military activity. Their protection is thus an issue of major importance. Naval systems are increasingly computerized in order to perform an optimal and secure navigation. To attain this objective, on board vessel sensor systems provide navigation information to be monitored and controlled from distant computers. Because of their importance and computerization, naval systems have become a target for hackers. Maritime vessels also work in a harsh and uncertain operational environments that produce failures. Navigation decision-making based on wrongly understood anomalies can be potentially catastrophic.Due to the particular characteristics of naval systems, the existing detection methodologies can't be applied. We propose quality evaluation and analysis as an alternative. The novelty of quality applications on cyber-physical systems shows the need for a general methodology, which is conceived and examined in this dissertation, to evaluate the quality of generated data streams. Identified quality elements allow introducing an original approach to detect malicious acts and failures. It consists of two processing stages: first an evaluation of quality; followed by the determination of agreement limits, compliant with normal states to identify and categorize anomalies. The study cases of 13 scenarios for a simulator training platform of fuel tanks and 11 scenarios for two aerial drones illustrate the interest and relevance of the obtained results.
|
Page generated in 0.4843 seconds