• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OF MICE AND COYOTES: MAMMALIAN RESPONSES TO RANGELAND MANAGEMENT PRACTICES IN TALLGRASS PRAIRIE

Ricketts, Andrew January 1900 (has links)
Doctor of Philosophy / Department of Biology / Brett K. Sandercock / Habitat heterogeneity is a key driver of biodiversity in many ecosystems. In native ecosystems, habitat heterogeneity can arise from multiple drivers including nutrients, topoedaphic conditions, and ecological disturbance. Historically, the prairies of North America existed as a heterogeneous mosaic of habitat conditions created by the interaction of fire and grazing by native ungulates. The focus of many grazing systems has been to minimize disturbance caused by grazing by promoting uniform distributions of grazing animals across management units. Patch-burn grazing is an alternative rangeland management practice that has been proposed to restore historical patch dynamics and biodiversity to rangelands by simulating historical disturbance processes. In my dissertation research, I tested the hypothesis that patch- burn grazing restores habitat heterogeneity to rangelands, and that the resulting habitat heterogeneity can promote biodiversity of native wildlife. I focus on responses of small mammals and coyotes to patch-burn grazing to gain a better understanding of wildlife responses to rangeland management, and because grassland mammals are an ecologically important group. My 3.5-year field study of habitat and small mammal responses to rangeland management showed that: 1) patch-burn grazing created greater heterogeneity in vegetative structure and composition of plant functional groups than in positive and negative controls; 2) habitat heterogeneity created by the interaction of fire and grazing increased small mammal richness and diversity compared to a negative control managed for uniform grazing distributions; 3) the interaction of fire and grazing structured small mammal communities in tallgrass prairie; and 4) population dynamic responses of small mammals to fire and grazing disturbance were species- specific. My 3-year study of coyote survival and resource selection revealed that: 1) rangeland management influences resource selection by coyotes in seasons when they depend on small mammal prey, but not during other seasons; and 2) anthropogenic sources of mortality are important for coyotes at a protected area, even in the absence of harvest. My field results show that restoring the drivers of historical patch dynamics to managed rangelands and publicly held grasslands that are not currently grazed could have profound effects on biodiversity conservation in North America, while continuing to provide ecosystem services to society.
2

Of mice and coyotes: mammalian responses to rangeland management practices in tallgrass prairie

Ricketts, Andrew Michael January 1900 (has links)
Doctor of Philosophy / Department of Biology / Brett K. Sandercock / Habitat heterogeneity is a key driver of biodiversity in many ecosystems. In native ecosystems, habitat heterogeneity can arise from multiple drivers including nutrients, topoedaphic conditions, and ecological disturbance. Historically, the prairies of North America existed as a heterogeneous mosaic of habitat conditions created by the interaction of fire and grazing by native ungulates. The focus of many grazing systems has been to minimize disturbance caused by grazing by promoting uniform distributions of grazing animals across management units. Patch-burn grazing is an alternative rangeland management practice that has been proposed to restore historical patch dynamics and biodiversity to rangelands by simulating historical disturbance processes. In my dissertation research, I tested the hypothesis that patch- burn grazing restores habitat heterogeneity to rangelands, and that the resulting habitat heterogeneity can promote biodiversity of native wildlife. I focus on responses of small mammals and coyotes to patch-burn grazing to gain a better understanding of wildlife responses to rangeland management, and because grassland mammals are an ecologically important group. My 3.5-year field study of habitat and small mammal responses to rangeland management showed that: 1) patch-burn grazing created greater heterogeneity in vegetative structure and composition of plant functional groups than in positive and negative controls; 2) habitat heterogeneity created by the interaction of fire and grazing increased small mammal richness and diversity compared to a negative control managed for uniform grazing distributions; 3) the interaction of fire and grazing structured small mammal communities in tallgrass prairie; and 4) population dynamic responses of small mammals to fire and grazing disturbance were species- specific. My 3-year study of coyote survival and resource selection revealed that: 1) rangeland management influences resource selection by coyotes in seasons when they depend on small mammal prey, but not during other seasons; and 2) anthropogenic sources of mortality are important for coyotes at a protected area, even in the absence of harvest. My field results show that restoring the drivers of historical patch dynamics to managed rangelands and publicly held grasslands that are not currently grazed could have profound effects on biodiversity conservation in North America, while continuing to provide ecosystem services to society.
3

Remote sensing of vegetation characteristics and spatial analysis of pyric herbivory in a tallgrass prairie

Ling, Bohua January 1900 (has links)
Doctor of Philosophy / Department of Geography / Douglas Goodin / Quantitative remote sensing provides an effective way of estimating and mapping vegetation characteristics over an extensive area. The spatially explicit distribution of canopy vegetative properties from remote sensing imagery can be further used for studies of spatial patterns and processes in grassland systems. My research focused on remote sensing of grassland vegetation characteristics and its applications to spatial analysis of grassland dynamics involving interactions between pyric herbivory and vegetation heterogeneity. In remote sensing of vegetation characteristics, (1) I estimated the foliar pigments and nutritional elements at the leaf level using hyperspectral data. The foliar pigments, chlorophylls and carotenoids, were retrieved by inverting the physical radiative transfer model, PROSPECT. The nutritional elements were modeled empirically using partial least squares (PLS) regression. Correlations were found between the leaf pigments and nutritional elements. This provided insight into the use of pigment-related vegetation indices as a proxy of the plant nutritional quality. (2) At the canopy level, I assessed the use of the broadband vegetation indices, normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI), in detecting vegetation quantity (LAI) and quality (leaf and canopy chlorophyll concentrations). The relationships between vegetation indices and vegetation characteristics were examined in the physical model, PROSAIL, and validated by a field dataset collected from a tallgrass prairie. NDVI showed high correlations with LAI and canopy chlorophylls. GRVI performed even better than NDVI in estimating LAI. A new index GNVI (green-red normalized vegetation index) that combined NDVI and GRVI was proposed to extract leaf chlorophyll concentration. These findings showed the potential of using broadband vegetation indices from multispectral remote sensors to monitor vegetation quantity and quality over a wide spatial extent. In the spatial analysis, I examined interactions between pyric herbivory and grassland heterogeneity at multiple scales from the remote sensing imagery. (3) At a coarse, watershed level, I evaluated effects of fire and large herbivores on the spatial distribution of canopy nitrogen. It was found that the interactive effects of fire and ungulate grazing were present in the watersheds burnt in spring, where a high level of ungulate grazing reduced vegetation density, but promoted canopy heterogeneity. Two grazer species, bison and cattle, were compared. Differences in the vegetation canopy between sites with bison and cattle were observed, which may be related to differences in the grazing intensity, forage behavior and habitat selection between the two grazer species. (4) At a fine, patch level (30 m), bison forage pattern was examined associated with canopy nitrogen heterogeneity. Bison preference for patches with high canopy nitrogen was evident in May. Later in June – September, bison tended to avoid sites with high canopy nitrogen. Vegetation heterogeneity showed significant influences on bison habitat selection in June. Bison preferred sites with low variance in canopy nitrogen, where the patch types were highly aggregated and equitably proportioned.

Page generated in 0.0302 seconds